ModernBERT-large-finetuned-clinc
This model is a fine-tuned version of answerdotai/ModernBERT-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2153
- Accuracy: 0.9652
- F1: 0.9647
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 9
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|---|---|---|---|---|---|
| 0.9456 | 1.0 | 313 | 0.2882 | 0.9335 | 0.9335 |
| 0.1118 | 2.0 | 626 | 0.2797 | 0.9477 | 0.9464 |
| 0.0455 | 3.0 | 939 | 0.2523 | 0.9565 | 0.9560 |
| 0.017 | 4.0 | 1252 | 0.2219 | 0.9613 | 0.9608 |
| 0.0106 | 5.0 | 1565 | 0.2081 | 0.9655 | 0.9651 |
| 0.0036 | 6.0 | 1878 | 0.2303 | 0.9603 | 0.9598 |
| 0.0039 | 7.0 | 2191 | 0.2068 | 0.9655 | 0.9650 |
| 0.0006 | 8.0 | 2504 | 0.2156 | 0.9645 | 0.9640 |
| 0.0001 | 9.0 | 2817 | 0.2153 | 0.9652 | 0.9647 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 14
Model tree for Pi-Marie/ModernBERT-large-finetuned-clinc
Base model
answerdotai/ModernBERT-large