Image Classification

ShuffleNet V2

Use case : Image classification

Model description

ShuffleNet V2 is designed following practical guidelines for efficient CNN architecture design. It uses channel shuffle operations and a split-concat structure for efficient feature reuse with minimal memory access cost.

The architecture features channel shuffle operations to enable information flow between channel groups, with a split-concat architecture for efficient feature processing. Designed based on practical guidelines using direct speed measurement rather than FLOPs, the architecture makes choices that minimize memory access cost.

ShuffleNet V2 is well-suited for mobile applications with strict efficiency requirements, real-time video processing, and multi-model deployment scenarios.

(source: https://arxiv.org/abs/1807.11164)

The model is quantized to int8 using ONNX Runtime and exported for efficient deployment.

Network information

Network Information Value
Framework Torch
MParams ~1.34–2.21 M
Quantization Int8
Provenance https://github.com/megvii-model/ShuffleNet-Series
Paper https://arxiv.org/abs/1807.11164

Network inputs / outputs

For an image resolution of NxM and P classes

Input Shape Description
(1, N, M, 3) Single NxM RGB image with UINT8 values between 0 and 255
Output Shape Description
(1, P) Per-class confidence for P classes in FLOAT32

Recommended platforms

Platform Supported Recommended
STM32L0 [] []
STM32L4 [] []
STM32U5 [] []
STM32H7 [] []
STM32MP1 [] []
STM32MP2 [] []
STM32N6 [x] [x]

Performances

Metrics

  • Measures are done with default STEdgeAI Core configuration with enabled input / output allocated option.
  • All the models are trained from scratch on Imagenet dataset

Reference NPU memory footprint on Imagenet dataset (see Accuracy for details on dataset)

Model Dataset Format Resolution Series Internal RAM (KiB) External RAM (KiB) Weights Flash (KiB) STEdgeAI Core version
shufflenetv2_x050_pt_224 Imagenet Int8 224×224×3 STM32N6 441 0 1369.07 3.0.0
shufflenetv2b_x050_pt_224 Imagenet Int8 224×224×3 STM32N6 441 0 1369.07 3.0.0
shufflenetv2_x100_pt_224 Imagenet Int8 224×224×3 STM32N6 459.38 0 2262.45 3.0.0
shufflenetv2b_x100_pt_224 Imagenet Int8 224×224×3 STM32N6 459.38 0 2263.57 3.0.0

Reference NPU inference time on Imagenet dataset (see Accuracy for details on dataset)

Model Dataset Format Resolution Board Execution Engine Inference time (ms) Inf / sec STEdgeAI Core version
shufflenetv2_x050_pt_224 Imagenet Int8 224×224×3 STM32N6570-DK NPU/MCU 8.35 119.76 3.0.0
shufflenetv2_x100_pt_224 Imagenet Int8 224×224×3 STM32N6570-DK NPU/MCU 32.43 30.84 3.0.0
shufflenetv2b_x050_pt_224 Imagenet Int8 224×224×3 STM32N6570-DK NPU/MCU 8.39 119.19 3.0.0
shufflenetv2b_x100_pt_224 Imagenet Int8 224×224×3 STM32N6570-DK NPU/MCU 32.65 30.63 3.0.0

Accuracy with Imagenet dataset

Model Format Resolution Top 1 Accuracy
shufflenetv2_x050_pt Float 224x224x3 60.63 %
shufflenetv2_x050_pt Int8 224x224x3 59.69 %
shufflenetv2_x100_pt Float 224x224x3 69.29 %
shufflenetv2_x100_pt Int8 224x224x3 68.65 %
shufflenetv2b_x050_pt Float 224x224x3 60.90 %
shufflenetv2b_x050_pt Int8 224x224x3 59.62 %
shufflenetv2b_x100_pt Float 224x224x3 70.40 %
shufflenetv2b_x100_pt Int8 224x224x3 69.59 %
Model Format Resolution Top 1 Accuracy
shufflenetv2_x050_pt Float 224x224x3 60.63 %
shufflenetv2_x050_pt Int8 224x224x3 59.69 %
shufflenetv2_x100_pt Float 224x224x3 69.29 %
shufflenetv2_x100_pt Int8 224x224x3 68.65 %
shufflenetv2b_x050_pt Float 224x224x3 60.90 %
shufflenetv2b_x050_pt Int8 224x224x3 59.62 %
shufflenetv2b_x100_pt Float 224x224x3 70.40 %
shufflenetv2b_x100_pt Int8 224x224x3 69.59 %

Retraining and Integration in a simple example:

Please refer to the stm32ai-modelzoo-services GitHub here

References

[1] - Dataset: Imagenet (ILSVRC 2012) — https://www.image-net.org/

[2] - Model: ShuffleNet V2 — https://github.com/megvii-model/ShuffleNet-Series

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for STMicroelectronics/shufflenetv2_pt