ShuffleNet V2
Use case : Image classification
Model description
ShuffleNet V2 is designed following practical guidelines for efficient CNN architecture design. It uses channel shuffle operations and a split-concat structure for efficient feature reuse with minimal memory access cost.
The architecture features channel shuffle operations to enable information flow between channel groups, with a split-concat architecture for efficient feature processing. Designed based on practical guidelines using direct speed measurement rather than FLOPs, the architecture makes choices that minimize memory access cost.
ShuffleNet V2 is well-suited for mobile applications with strict efficiency requirements, real-time video processing, and multi-model deployment scenarios.
(source: https://arxiv.org/abs/1807.11164)
The model is quantized to int8 using ONNX Runtime and exported for efficient deployment.
Network information
| Network Information | Value |
|---|---|
| Framework | Torch |
| MParams | ~1.34–2.21 M |
| Quantization | Int8 |
| Provenance | https://github.com/megvii-model/ShuffleNet-Series |
| Paper | https://arxiv.org/abs/1807.11164 |
Network inputs / outputs
For an image resolution of NxM and P classes
| Input Shape | Description |
|---|---|
| (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
| Output Shape | Description |
|---|---|
| (1, P) | Per-class confidence for P classes in FLOAT32 |
Recommended platforms
| Platform | Supported | Recommended |
|---|---|---|
| STM32L0 | [] | [] |
| STM32L4 | [] | [] |
| STM32U5 | [] | [] |
| STM32H7 | [] | [] |
| STM32MP1 | [] | [] |
| STM32MP2 | [] | [] |
| STM32N6 | [x] | [x] |
Performances
Metrics
- Measures are done with default STEdgeAI Core configuration with enabled input / output allocated option.
- All the models are trained from scratch on Imagenet dataset
Reference NPU memory footprint on Imagenet dataset (see Accuracy for details on dataset)
| Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STEdgeAI Core version |
|---|---|---|---|---|---|---|---|---|
| shufflenetv2_x050_pt_224 | Imagenet | Int8 | 224×224×3 | STM32N6 | 441 | 0 | 1369.07 | 3.0.0 |
| shufflenetv2b_x050_pt_224 | Imagenet | Int8 | 224×224×3 | STM32N6 | 441 | 0 | 1369.07 | 3.0.0 |
| shufflenetv2_x100_pt_224 | Imagenet | Int8 | 224×224×3 | STM32N6 | 459.38 | 0 | 2262.45 | 3.0.0 |
| shufflenetv2b_x100_pt_224 | Imagenet | Int8 | 224×224×3 | STM32N6 | 459.38 | 0 | 2263.57 | 3.0.0 |
Reference NPU inference time on Imagenet dataset (see Accuracy for details on dataset)
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STEdgeAI Core version |
|---|---|---|---|---|---|---|---|---|
| shufflenetv2_x050_pt_224 | Imagenet | Int8 | 224×224×3 | STM32N6570-DK | NPU/MCU | 8.35 | 119.76 | 3.0.0 |
| shufflenetv2_x100_pt_224 | Imagenet | Int8 | 224×224×3 | STM32N6570-DK | NPU/MCU | 32.43 | 30.84 | 3.0.0 |
| shufflenetv2b_x050_pt_224 | Imagenet | Int8 | 224×224×3 | STM32N6570-DK | NPU/MCU | 8.39 | 119.19 | 3.0.0 |
| shufflenetv2b_x100_pt_224 | Imagenet | Int8 | 224×224×3 | STM32N6570-DK | NPU/MCU | 32.65 | 30.63 | 3.0.0 |
Accuracy with Imagenet dataset
| Model | Format | Resolution | Top 1 Accuracy |
|---|---|---|---|
| shufflenetv2_x050_pt | Float | 224x224x3 | 60.63 % |
| shufflenetv2_x050_pt | Int8 | 224x224x3 | 59.69 % |
| shufflenetv2_x100_pt | Float | 224x224x3 | 69.29 % |
| shufflenetv2_x100_pt | Int8 | 224x224x3 | 68.65 % |
| shufflenetv2b_x050_pt | Float | 224x224x3 | 60.90 % |
| shufflenetv2b_x050_pt | Int8 | 224x224x3 | 59.62 % |
| shufflenetv2b_x100_pt | Float | 224x224x3 | 70.40 % |
| shufflenetv2b_x100_pt | Int8 | 224x224x3 | 69.59 % |
| Model | Format | Resolution | Top 1 Accuracy |
|---|---|---|---|
| shufflenetv2_x050_pt | Float | 224x224x3 | 60.63 % |
| shufflenetv2_x050_pt | Int8 | 224x224x3 | 59.69 % |
| shufflenetv2_x100_pt | Float | 224x224x3 | 69.29 % |
| shufflenetv2_x100_pt | Int8 | 224x224x3 | 68.65 % |
| shufflenetv2b_x050_pt | Float | 224x224x3 | 60.90 % |
| shufflenetv2b_x050_pt | Int8 | 224x224x3 | 59.62 % |
| shufflenetv2b_x100_pt | Float | 224x224x3 | 70.40 % |
| shufflenetv2b_x100_pt | Int8 | 224x224x3 | 69.59 % |
Retraining and Integration in a simple example:
Please refer to the stm32ai-modelzoo-services GitHub here
References
[1] - Dataset: Imagenet (ILSVRC 2012) — https://www.image-net.org/
[2] - Model: ShuffleNet V2 — https://github.com/megvii-model/ShuffleNet-Series