Image Classification

ST ResNet

Use case : Image classification

Model description

ST ResNet is STMicroelectronics' custom ResNet family specifically designed and optimized for STM32 deployment. It offers a range of sizes from "pico" to "tiny" with ReLU activations, providing a progressive accuracy-efficiency trade-off tailored for embedded vision applications.

The architecture is STM32-optimized and designed specifically for STM32 NPU deployment, with progressive sizing from Pico β†’ Nano β†’ Micro β†’ Milli β†’ Tiny (increasing capacity). It uses ReLU activation for quantization friendliness and a balanced design optimized for both accuracy and inference speed on target hardware.

ST ResNet models are the recommended choice for production STM32 deployments, with all variants running on internal RAM only and well-characterized performance on STM32 hardware.

(source: https://arxiv.org/abs/2601.05364, https://arxiv.org/abs/2511.11716)

The model is quantized to int8 using ONNX Runtime and exported for efficient deployment.

Network information

Network Information Value
Framework Torch
MParams ~0.59–3.97 M
Quantization Int8
Provenance https://github.com/STMicroelectronics/stm32ai-modelzoo
Paper https://arxiv.org/abs/2601.05364

Network inputs / outputs

For an image resolution of NxM and P classes

Input Shape Description
(1, N, M, 3) Single NxM RGB image with UINT8 values between 0 and 255
Output Shape Description
(1, P) Per-class confidence for P classes in FLOAT32

Recommended platforms

Platform Supported Recommended
STM32L0 [] []
STM32L4 [] []
STM32U5 [] []
STM32H7 [] []
STM32MP1 [] []
STM32MP2 [] []
STM32N6 [x] [x]

Performances

Metrics

  • Measures are done with default STEdgeAI Core configuration with enabled input / output allocated option.
  • All the models are trained from scratch on Imagenet dataset

Reference NPU memory footprint on Imagenet dataset (see Accuracy for details on dataset)

Model Dataset Format Resolution Series Internal RAM (KiB) External RAM (KiB) Weights Flash (KiB) STEdgeAI Core version
st_resnetpico_actrelu_pt_224 Imagenet Int8 224Γ—224Γ—3 STM32N6 784 0 607.27 3.0.0
st_resnetnano_actrelu_pt_224 Imagenet Int8 224Γ—224Γ—3 STM32N6 759.5 0 992.04 3.0.0
st_resnetmicro_actrelu_pt_224 Imagenet Int8 224Γ—224Γ—3 STM32N6 882 0 1534.12 3.0.0
st_resnetmilli_actrelu_pt_224 Imagenet Int8 224Γ—224Γ—3 STM32N6 1421 0 3059.81 3.0.0
st_resnettiny_actrelu_pt_224 Imagenet Int8 224Γ—224Γ—3 STM32N6 2205 0 4060.57 3.0.0

Reference NPU inference time on imagenet dataset (see Accuracy for details on dataset)

Model Dataset Format Resolution Board Execution Engine Inference time (ms) Inf / sec STEdgeAI Core version
st_resnetpico_actrelu_pt_224 Imagenet Int8 224Γ—224Γ—3 STM32N6570-DK NPU/MCU 7.54 132.63 3.0.0
st_resnetnano_actrelu_pt_224 Imagenet Int8 224Γ—224Γ—3 STM32N6570-DK NPU/MCU 9.46 105.71 3.0.0
st_resnetmicro_actrelu_pt_224 Imagenet Int8 224Γ—224Γ—3 STM32N6570-DK NPU/MCU 13.83 72.31 3.0.0
st_resnetmilli_actrelu_pt_224 Imagenet Int8 224Γ—224Γ—3 STM32N6570-DK NPU/MCU 17.59 56.85 3.0.0
st_resnettiny_actrelu_pt_224 Imagenet Int8 224Γ—224Γ—3 STM32N6570-DK NPU/MCU 24.10 41.49 3.0.0
Model Format Resolution Board Execution Engine Inference time (ms) Inf / sec STM32Cube.AI version STEdgeAI Core version
st_resnetpico_actrelu_pt_224 Int8 224Γ—224Γ—3 STM32N6570-DK NPU/MCU 7.54 132.63 10.2.0 2.2.0
st_resnetnano_actrelu_pt_224 Int8 224Γ—224Γ—3 STM32N6570-DK NPU/MCU 9.46 105.71 10.2.0 2.2.0
st_resnetmicro_actrelu_pt_224 Int8 224Γ—224Γ—3 STM32N6570-DK NPU/MCU 13.83 72.31 10.2.0 2.2.0
st_resnetmilli_actrelu_pt_224 Int8 224Γ—224Γ—3 STM32N6570-DK NPU/MCU 17.59 56.85 10.2.0 2.2.0
st_resnettiny_actrelu_pt_224 Int8 224Γ—224Γ—3 STM32N6570-DK NPU/MCU 24.10 41.49 10.2.0 2.2.0

Accuracy with Imagenet dataset

Model Format Resolution Top 1 Accuracy
st_resnetmicro_actrelu_pt Float 224Γ—224Γ—3 66.43 %
st_resnetmicro_actrelu_pt Int8 224Γ—224Γ—3 65.62 %
st_resnetmilli_actrelu_pt Float 224Γ—224Γ—3 71.10 %
st_resnetmilli_actrelu_pt Int8 224Γ—224Γ—3 70.45 %
st_resnetnano_actrelu_pt Float 224Γ—224Γ—3 59.32 %
st_resnetnano_actrelu_pt Int8 224Γ—224Γ—3 58.25 %
st_resnetpico_actrelu_pt Float 224Γ—224Γ—3 49.42 %
st_resnetpico_actrelu_pt Int8 224Γ—224Γ—3 46.98 %
st_resnettiny_actrelu_pt Float 224Γ—224Γ—3 72.07 %
st_resnettiny_actrelu_pt Int8 224Γ—224Γ—3 71.40 %

Dataset details: link Number of classes: 1000. To perform the quantization, we calibrated the activations with a random subset of the training set. For the sake of simplicity, the accuracy reported here was estimated on the 50000 labelled images of the validation set.

Model Format Resolution Top 1 Accuracy
st_resnetmicro_actrelu_pt Float 224Γ—224Γ—3 66.43 %
st_resnetmicro_actrelu_pt Int8 224Γ—224Γ—3 65.62 %
st_resnetmilli_actrelu_pt Float 224Γ—224Γ—3 71.10 %
st_resnetmilli_actrelu_pt Int8 224Γ—224Γ—3 70.45 %
st_resnetnano_actrelu_pt Float 224Γ—224Γ—3 59.32 %
st_resnetnano_actrelu_pt Int8 224Γ—224Γ—3 58.25 %
st_resnetpico_actrelu_pt Float 224Γ—224Γ—3 49.42 %
st_resnetpico_actrelu_pt Int8 224Γ—224Γ—3 46.98 %
st_resnettiny_actrelu_pt Float 224Γ—224Γ—3 72.07 %
st_resnettiny_actrelu_pt Int8 224Γ—224Γ—3 71.40 %

Retraining and Integration in a simple example:

Please refer to the stm32ai-modelzoo-services GitHub here

References

[1] - Dataset: Imagenet (ILSVRC 2012) β€” https://www.image-net.org/

[2] - Model: STRESNET & STYOLO β€” https://arxiv.org/abs/2601.05364

[3] - Model: CompressNAS β€” https://arxiv.org/abs/2511.11716

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Papers for STMicroelectronics/st_resnet_pt