Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from uclanlp/plbart-java-cs. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: PLBartModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("buelfhood/SOCO-Java-PLBART-ST")
# Run inference
sentences = [
'\nimport java.util.*;\n\npublic class WatchDog\n{\n private Timer t;\n\n public WatchDog()\n {\n t = new Timer();\n TimerTask task = new TimerTask()\n {\n public void run()\n\t {\n\t Dog doggy = new Dog();\n\t }\n };\n \n t.schedule(task, 0, 86400000);\n }\n public static void main( String[] args)\n {\n WatchDog wd = new WatchDog();\n }\n}\n',
'import\tjava.io.*;\n\nclass WatchDog {\n public static void main(String args[]) {\n \n\t if (args.length<1)\n\t {\n System.out.println("Correct Format Filename email address <username@cs.rmit.edu.> of the recordkeeper"); \n System.exit(1);\t\n\t }\n\n\twhile (true)\n\t\t{\n\t\t\n\t\t\n FileInputStream stream=null;\n DataInputStream word=null;\n String input=" "; \n\n\n\ttry {\n\n\n String ls_str;\n \n \t \n\t Process ls_proc = Runtime.getRuntime().exec("wget http://www.cs.rmit.edu./students");\n \t\ttry {\n\t\tThread.sleep(2000);\n\t\t}catch (Exception e) {\n System.err.println("Caught ThreadException: " +e.getMessage());\n\t }\n\n\t\tString[] cmd = {"//sh","-c", "diff Index2.html index.html >report.txt "};\n\n\t ls_proc = Runtime.getRuntime().exec(cmd);\n\t\t \n\t\t\t\n\t\t\ttry {\n\t\tThread.sleep(2000);\n\t\t}catch (Exception e) {\n System.err.println("Caught ThreadException: " +e.getMessage());\n\t }\n\t\t\n\t\t\n\t\t\n\t\tif (ls_proc.exitValue()==2) \n\t\t{\n\t\t \t System.out.println("The file was checked for first time, email sent");\n\n Process move = Runtime.getRuntime().exec("mv index.html Index2.html");\n\t\t \n\n\t\t}\n\t\telse\n\t\t{\n\n\t\t\t\tstream = new FileInputStream ("report.txt"); \n\t\t\t\tword =new DataInputStream(stream);\n\n\n\t\t\t\tif (word.available() !=0)\n\t\t\t\t{\n\n\t\t\t\t\ttry\n\t\t\t\t\t{\n\n\t\t\t\t\tString[] cmd1 = {"//sh","-c","diff Index2.html index.html | mail "+args[0]};\n\t\t\t\t\t Process proc = Runtime.getRuntime().exec(cmd1);\n\t\t\t\t\t Thread.sleep(2000);\n\t\t\t\t\tProcess move = Runtime.getRuntime().exec("mv index.html Index2.html");\n\t\t\t\t\tThread.sleep(2000);\n\t\t\t\t\tSystem.out.println("Difference Found , Email Sent");\n\n\t\t\t\t\t}\n\t\t\t\t\tcatch (Exception e1) {\n\t\t\t\t\t\t\tSystem.err.println(e1);\n\t\t\t\t\t\t\tSystem.exit(1);\n\t\t\t\t\t\t\n\t\t\t\t\t \n\t\t\t\t\t\t}\n\t\t\t\t\t \n\t \n\t \n\t\t\t\t }\n\t\t\t\t else\n\t\t\t\t\t{\n\t\t\t\t\t\t System.out.println(" Differnce Detected");\n\n\n\t\t\t\t\t}\n\t\t}\n\t}\n\t\n\n\t catch (IOException e1) {\n\t System.err.println(e1);\n\t System.exit(1);\n\t\n \n\t}\ntry\n{\nword.close();\nstream.close(); \n\t\n}\n \ncatch (IOException e)\n{ \nSystem.out.println("Error in closing input file:\\n" + e.toString()); \n} \n \t\ntry {\nThread.sleep(20000); \n }\ncatch (Exception e) \n\t{\nSystem.err.println("Caught ThreadException: " +e.getMessage());\n\t}\n\t\t\n\n } \n\n\t} \n\t\n }',
'\n\n\n\nimport java.io.InputStream;\nimport java.util.Properties;\n\nimport javax.naming.Context;\nimport javax.naming.InitialContext;\nimport javax.rmi.PortableRemoteObject;\nimport javax.sql.DataSource;\n\n\n\n\npublic class BruteForcePropertyHelper {\n\n\tprivate static Properties bruteForceProps;\n\n\n\n\tpublic BruteForcePropertyHelper() {\n\t}\n\n\n\t\n\n\tpublic static String getProperty(String pKey){\n\t\ttry{\n\t\t\tinitProps();\n\t\t}\n\t\tcatch(Exception e){\n\t\t\tSystem.err.println("Error init\'ing the burteforce Props");\n\t\t\te.printStackTrace();\n\t\t}\n\t\treturn bruteForceProps.getProperty(pKey);\n\t}\n\n\n\tprivate static void initProps() throws Exception{\n\t\tif(bruteForceProps == null){\n\t\t\tbruteForceProps = new Properties();\n\n\t\t\tInputStream fis =\n\t\t\t\tBruteForcePropertyHelper.class.getResourceAsStream("/bruteforce.properties");\n\t\t\tbruteForceProps.load(fis);\n\t\t}\n\t}\n}\n\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sentence_0, sentence_1, and label| sentence_0 | sentence_1 | label | |
|---|---|---|---|
| type | string | string | int |
| details |
|
|
|
| sentence_0 | sentence_1 | label |
|---|---|---|
|
|
0 |
|
import java.util.; |
0 |
|
|
0 |
BatchAllTripletLossper_device_train_batch_size: 32per_device_eval_batch_size: 32num_train_epochs: 1fp16: Truemulti_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin| Epoch | Step | Training Loss |
|---|---|---|
| 0.4785 | 500 | 0.3437 |
| 0.9569 | 1000 | 0.3653 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Base model
uclanlp/plbart-java-cs