SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False, 'architecture': 'MPNetModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("chatlas/all-mpnet-base-v2-combined_4400-400vs1000")
# Run inference
sentences = [
'Which file could not be opened according to the xAOD::TFileMerger::addFile error message?',
'Metadata:\nsource: AtlasTalk\n\nChunk text:\nError in <xAOD::TFileMerger::addFile>: /build1/atnight/localbuilds/nightlies/AnalysisBase-2.3.X/AnalysisBase/rel_nightly/xAODRootAccess/Root/TFileMerger.cxx:105 Couldn\'t open file "user.pottgen.5855794._000003.hist-output.root"',
"Metadata:\nsource: GitLabMarkdown\nproject path: acc-co/ucap/ucap-core\nproject description: \nfile path: docs/src/docs/reference/device-behavior.md\nheader path: 'Device Behavior' > 'Acquisition properties' > 'First updates'\n\nChunk text:\nAs of May 2024, UCAP retains converter outputs (for each selector) within an in-memory data structure, paired with the\nrelevant selector. Thus, UCAP nodes provide first-updates as needed for `get` and `subscribe` operations; however,",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.7130, -0.0958],
# [ 0.7130, 1.0000, -0.1120],
# [-0.0958, -0.1120, 1.0000]])
Evaluation
Metrics
Information Retrieval
- Dataset:
validation - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.745 |
| cosine_accuracy@3 | 0.8583 |
| cosine_accuracy@5 | 0.8867 |
| cosine_accuracy@10 | 0.9183 |
| cosine_precision@1 | 0.745 |
| cosine_precision@3 | 0.2861 |
| cosine_precision@5 | 0.1773 |
| cosine_precision@10 | 0.0918 |
| cosine_recall@1 | 0.745 |
| cosine_recall@3 | 0.8583 |
| cosine_recall@5 | 0.8867 |
| cosine_recall@10 | 0.9183 |
| cosine_ndcg@10 | 0.8348 |
| cosine_mrr@10 | 0.8078 |
| cosine_map@100 | 0.8109 |
| dot_accuracy@1 | 0.745 |
| dot_accuracy@3 | 0.8583 |
| dot_accuracy@5 | 0.8867 |
| dot_accuracy@10 | 0.9183 |
| dot_precision@1 | 0.745 |
| dot_precision@3 | 0.2861 |
| dot_precision@5 | 0.1773 |
| dot_precision@10 | 0.0918 |
| dot_recall@1 | 0.745 |
| dot_recall@3 | 0.8583 |
| dot_recall@5 | 0.8867 |
| dot_recall@10 | 0.9183 |
| dot_ndcg@10 | 0.8348 |
| dot_mrr@10 | 0.8078 |
| dot_map@100 | 0.8109 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 12,000 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 11 tokens
- mean: 29.43 tokens
- max: 93 tokens
- min: 33 tokens
- mean: 142.95 tokens
- max: 356 tokens
- Samples:
anchor positive On the ATLAS Trigger Developer Pages, what do two-digit version numbers (e.g., 21.3) and three-digit version numbers (e.g., 21.3.9) indicate?Metadata:
source: twiki
name:
version: 51
last modification: 09-09-2024
category: trigger
parents_structure: W, e, b, H, o, m, e, /, A, t, l, a, s, T, r, i, g, g, e, r, /, T, r, i, g, g, e, r, D, e, v, e, l, o, p, e, r, P, a, g, e, s
Chunk text:
* Two-digit version numbers correspond the branch used to build the nightly (e.g. 21.3) while three digit version numbers correspond to built releases (21.3.9).How can I list all available nox sessions using the uv runner?Metadata:
source: GitLabMarkdown
project path: particlepredatorinvasion/digout
project description: Configurable Python library that automates the conversion of LHCb DIGI files into parquet dataframes by managing a sequence of dependent steps and scheduling their parallel execution on local or distributed systems.
file path: docs/source/development/tests.md
header path: 'Testing & Automation' > 'Running Sessions'
Chunk text:
To list all available sessions:bash<br>uv run nox --list<br>
To run a specific session:bash<br>uv run nox -s <session_name><br>
For example, to run the linter:uv run nox -s lint_check.Which setupATLAS -c options will set up the default CentOS6 container used by ATLAS?Metadata:
source: AtlasTalk
Chunk text:
Answer 5:
Hi,
You can also do
setupATLAS -c centos6
setupATLAS -c sl6
setupATLAS -c rhel6
and it will always setup the default centos6 container that is used by ATLAS. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 1.0, "similarity_fct": "dot_score", "gather_across_devices": false }
Evaluation Dataset
Unnamed Dataset
- Size: 1,200 evaluation samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 8 tokens
- mean: 28.49 tokens
- max: 100 tokens
- min: 38 tokens
- mean: 142.38 tokens
- max: 384 tokens
- Samples:
anchor positive Which copytool was used when the file transfer failed according to the error message?Metadata:
source: AtlasTalk
Chunk text:
No matching replicas were found in list_replicas() output: [ReplicasNotFound(('No replica found for lfn=panda.0911140145.367865.lib._30337145.30050914397.lib.tgz (allow_lan=True, allow_wan=False)',), {})]:failed to transfer files using copytools=['rucio']What are the dimensions of the single conductor wire used in SMC_set10 model set #10?Metadata:
source: GitLabMarkdown
project path: steam/analyses/esc-on-smc
project description:
file path: SMC_set10/README.md
header path: 'Model set #10'
Chunk text:
Its conductor is a single 2 mm * 0.5 mm wire, but in ROXIE it has 4x4 current lines.Where should an author go to submit an ATLAS internal note to the CERN Document Server (CDS)?Metadata:
source: twiki
name:
version: 5
last modification: 19-04-2022
category: pubcom
parents_structure: P, u, b, C, o, m
Chunk text:
For each ATLAS internal note the following should be done:
* go to the [[https://cds.cern.ch/submit?ln=en&doctype=ATN][CDS submission page for ATLAS notes]]: =https://cds.cern.ch/submit?ln=en&doctype=ATN= - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 1.0, "similarity_fct": "dot_score", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16gradient_accumulation_steps: 4learning_rate: 5e-07warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 4eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-07weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | Validation Loss | validation_cosine_ndcg@10 |
|---|---|---|---|---|
| 0.5333 | 100 | 2.3423 | 2.2474 | 0.7773 |
| 1.064 | 200 | 2.2441 | 2.1880 | 0.8141 |
| 1.5973 | 300 | 2.208 | 2.1673 | 0.8285 |
| 2.128 | 400 | 2.1906 | 2.1575 | 0.8343 |
| 2.6613 | 500 | 2.1826 | 2.1530 | 0.8348 |
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.0
- Transformers: 4.55.2
- PyTorch: 2.2.2+cu121
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.21.4
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Model tree for chatlas/all-mpnet-base-v2-combined_4400-400vs1000
Base model
sentence-transformers/all-mpnet-base-v2Evaluation results
- Cosine Accuracy@1 on validationself-reported0.745
- Cosine Accuracy@3 on validationself-reported0.858
- Cosine Accuracy@5 on validationself-reported0.887
- Cosine Accuracy@10 on validationself-reported0.918
- Cosine Precision@1 on validationself-reported0.745
- Cosine Precision@3 on validationself-reported0.286
- Cosine Precision@5 on validationself-reported0.177
- Cosine Precision@10 on validationself-reported0.092
- Cosine Recall@1 on validationself-reported0.745
- Cosine Recall@3 on validationself-reported0.858