text
stringlengths 7
60
| labels
listlengths 1
71
|
|---|---|
Weinbautechniker/in (DI)
|
[
6305,
6306,
6307,
6308,
6309,
6310,
6311,
6312,
6313
] |
Agrarberater/in (Ing)
|
[
15024,
15025,
15026,
15027,
15028
] |
Landwirt/in
|
[
3024,
3025,
3026,
3027,
3028
] |
Facharbeiter/in der ländlichen Hauswirtschaft
|
[
3365,
3366,
3367,
3368,
3369
] |
Landarbeiter/in
|
[
16240,
16241,
16242,
16243,
16244,
16245,
16246,
16247,
16248
] |
Facharbeiter/in Landwirtschaft
|
[
6003,
6004,
6005,
6006,
6007,
6008,
6009
] |
Landwirtschaftlich(er)e Gehilf(e)in
|
[
16240,
16241,
16242,
16243,
16244,
16245,
16246,
16247,
16248
] |
Landwirtschaftlich(er)e Hilfsarbeiter/in
|
[
16240,
16241,
16242,
16243,
16244,
16245,
16246,
16247,
16248
] |
Stallbursch/-mädchen
|
[
7522,
7523,
7524,
7525,
7526,
7527,
7528
] |
Wirtschafter/in (Landwirtschaft)
|
[
3365,
3366,
3367,
3368,
3369
] |
Erntearbeiter/in
|
[
5026,
5027,
5028,
5029,
5030,
5031,
5032,
5033,
5034
] |
Dorfhelfer/in
|
[
3365,
3366,
3367,
3368,
3369
] |
Facharbeiter/in ländliches Betriebs- und Haushaltsmanagement
|
[
3365,
3366,
3367,
3368,
3369
] |
Facharbeiter/in ländliches Betriebs- und Haushaltsmanagement
|
[
3365,
3366,
3367,
3368,
3369
] |
Facharbeiter/in Landwirtschaft
|
[
6003,
6004,
6005,
6006,
6007,
6008,
6009
] |
Weinbaugehilf(e)in
|
[
18033,
18034,
18035,
18036,
18037,
18038,
18039,
18040,
18041,
18042,
18043
] |
Traktorführer/in
|
[
9007,
9008,
9009,
9010,
9011
] |
Pferdepfleger/in
|
[
15472,
15473,
15474,
15475,
15476,
15477,
15478
] |
Geflügelzuchtgehilf(e)in
|
[
13344,
13345,
13346,
13347,
13348
] |
Imker/in
|
[
844,
845,
846,
847,
848,
849,
850,
851,
852
] |
Hundeabrichter/in
|
[
3833,
3834,
3835,
3836,
3837,
3838,
3839,
3840,
3841,
3842,
3843,
3844,
3845
] |
Landschaftsgärtner/in
|
[
18141,
18142,
18143,
18144,
18145,
18146,
18147,
18148,
18149
] |
Facharbeiter/in Gartenbau
|
[
2869,
2870,
2871,
2872,
2873,
2874,
2875
] |
Facharbeiter/in Obstbau und Obstverwertung
|
[
14911,
14912,
14913,
14914,
14915,
14916,
14917
] |
Facharbeiter/in Gartenbau
|
[
2869,
2870,
2871,
2872,
2873,
2874,
2875
] |
Facharbeiter/in Obstbau und Obstverwertung
|
[
14911,
14912,
14913,
14914,
14915,
14916,
14917
] |
Forstwirt/in (Ing)
|
[
18666,
18667,
18668,
18669,
18670,
18671,
18672,
18673,
18674,
18675,
18676,
18677,
18678
] |
Förster/in
|
[
18888,
18889,
18890,
18891,
18892,
18893,
18894,
18895,
18896,
18897,
18898,
18899,
18900
] |
Facharbeiter/in Forstwirtschaft
|
[
19502,
19503,
19504,
19505,
19506,
19507,
19508,
19509,
19510,
19511,
19512
] |
Facharbeiter/in Forstgarten- und Forstpflegewirtschaft
|
[
19502,
19503,
19504,
19505,
19506,
19507,
19508,
19509,
19510,
19511,
19512
] |
Forstgehilf(e)in
|
[
10118,
10119,
10120,
10121,
10122,
10123,
10124,
10125,
10126,
10127,
10128,
10129,
10130,
10131,
10132,
10133,
10134,
10135,
10136,
10137,
10138,
10139,
10140
] |
Facharbeiter/in Forstwirtschaft
|
[
19502,
19503,
19504,
19505,
19506,
19507,
19508,
19509,
19510,
19511,
19512
] |
Facharbeiter/in Forstgarten- und Forstpflegewirtschaft
|
[
19502,
19503,
19504,
19505,
19506,
19507,
19508,
19509,
19510,
19511,
19512
] |
Forsttechniker/in
|
[
19502,
19503,
19504,
19505,
19506,
19507,
19508,
19509,
19510,
19511,
19512
] |
Jäger/in
|
[
16215,
16216,
16217
] |
Bergmann/-frau
|
[
18648,
18649,
18650,
18651,
18652,
18653,
18654
] |
Sprengmeister/in
|
[
4123,
4124,
4125,
4126,
4127,
4128,
4129,
4130,
4131
] |
Steinbrucharbeiter/in
|
[
13195,
13196,
13197,
13198,
13199,
13200,
13201,
13202,
13203,
13204,
13205,
13206,
13207,
13208,
13209,
13210,
13211,
13212,
13213,
13214,
13215,
13216,
13217,
13218,
13219,
13220,
13221,
13222,
13223
] |
Steinmetz/in
|
[
18870,
18871,
18872,
18873,
18874,
18875,
18876
] |
Steinmetz/in
|
[
18870,
18871,
18872,
18873,
18874,
18875,
18876
] |
Steinschleifer/in
|
[
15902,
15903,
15904,
15905,
15906,
15907,
15908,
15909,
15910,
15911,
15912,
15913,
15914,
15915,
15916,
15917,
15918,
15919,
15920,
15921,
15922,
15923
] |
Betonwerker/in
|
[
11341,
11342,
11343,
11344,
11345,
11346,
11347,
11348,
11349,
11350,
11351,
11352,
11353,
11354,
11355,
11356,
11357,
11358,
11359,
11360,
11361,
11362,
11363,
11364,
11365,
11366,
11367,
11368,
11369,
11370,
11371
] |
Ziegelmacher/in
|
[
14824,
14825,
14826,
14827,
14828,
14829,
14830,
14831,
14832
] |
Keramiker/in
|
[
18407,
18408,
18409,
18410,
18411,
18412,
18413,
18414,
18415
] |
Töpfereigehilf(e)in
|
[
12572,
12573,
12574,
12575,
12576
] |
Keramiker/in - Gebrauchskeramik
|
[
12572,
12573,
12574,
12575,
12576
] |
Keramiker/in - Industriekeramik
|
[
920,
921,
922,
923
] |
Keramiker/in - Gebrauchskeramik
|
[
12572,
12573,
12574,
12575,
12576
] |
Keramiker/in - Industriekeramik
|
[
920,
921,
922,
923
] |
Porzellanmaler/in
|
[
17412,
17413,
17414,
17415,
17416
] |
Porzellanschleifer/in
|
[
12572,
12573,
12574,
12575,
12576
] |
Glasmacher/in
|
[
17786,
17787,
17788
] |
Glasmacher/in
|
[
17786,
17787,
17788
] |
Feinoptiker/in
|
[
5246,
5247,
5248,
5249,
5250
] |
Feinoptiker/in
|
[
5246,
5247,
5248,
5249,
5250
] |
Glasmaler/in
|
[
9263,
9264,
9265
] |
Glasgestalter/in
|
[
5766,
5767,
5768
] |
Maurer/in
|
[
1139,
1140,
1141
] |
Maurerpolier/in
|
[
1050,
1051,
1052,
1053,
1054
] |
Maurer/in
|
[
1139,
1140,
1141
] |
Stukkateur/in
|
[
18909,
18910,
18911,
18912,
18913,
18914,
18915,
18916,
18917,
18918,
18919
] |
Stuckateur/in und Trockenausbauer/in
|
[
5769,
5770,
5771,
5772,
5773
] |
Stuckateur/in und Trockenausbauer/in
|
[
5769,
5770,
5771,
5772,
5773
] |
Zimmer(er)in
|
[
4068,
4069,
4070,
4071,
4072,
4073,
4074,
4075,
4076,
4077,
4078,
4079,
4080,
4081,
4082
] |
Zimmerer-Polier/in
|
[
11408,
11409,
11410,
11411,
11412
] |
Zimmer(er)in
|
[
4068,
4069,
4070,
4071,
4072,
4073,
4074,
4075,
4076,
4077,
4078,
4079,
4080,
4081,
4082
] |
Betonbauer/in
|
[
12698,
12699,
12700,
12701,
12702,
12703,
12704,
12705,
12706,
12707,
12708,
12709,
12710,
12711,
12712,
12713,
12714,
12715,
12716,
12717,
12718,
12719,
12720,
12721,
12722,
12723,
12724,
12725,
12726,
12727,
12728,
12729,
12730
] |
Polier/in (Betonbau)
|
[
3343,
3344,
3345,
3346,
3347
] |
Betonbauer/in
|
[
12698,
12699,
12700,
12701,
12702,
12703,
12704,
12705,
12706,
12707,
12708,
12709,
12710,
12711,
12712,
12713,
12714,
12715,
12716,
12717,
12718,
12719,
12720,
12721,
12722,
12723,
12724,
12725,
12726,
12727,
12728,
12729,
12730
] |
Brunnenmacher/in
|
[
6077,
6078,
6079,
6080,
6081,
6082,
6083,
6084,
6085,
6086,
6087,
6088,
6089,
6090,
6091,
6092,
6093
] |
Gleisbautechniker/in
|
[
4065,
4066,
4067
] |
Gleisbautechniker/in
|
[
4065,
4066,
4067
] |
Straßenbaupolier/in
|
[
10449,
10450,
10451,
10452
] |
Kabelleger/in
|
[
16428,
16429,
16430,
16431,
16432
] |
Tiefbauer/in
|
[
2049,
2050,
2051,
2052,
2053
] |
Dachdecker/in
|
[
14662,
14663,
14664,
14665,
14666,
14667,
14668,
14669,
14670,
14671,
14672,
14673,
14674,
14675,
14676
] |
Dachdecker/in
|
[
14662,
14663,
14664,
14665,
14666,
14667,
14668,
14669,
14670,
14671,
14672,
14673,
14674,
14675,
14676
] |
Platten- und Fliesenleger/in
|
[
822,
823,
824,
825,
826,
827,
828,
829,
830
] |
Platten- und Fliesenleger/in
|
[
822,
823,
824,
825,
826,
827,
828,
829,
830
] |
Terrazzomacher/in
|
[
13627,
13628,
13629,
13630,
13631,
13632,
13633
] |
Bodenlegerhelfer/in
|
[
17932,
17933,
17934,
17935,
17936,
17937,
17938
] |
Belagsverleger/in
|
[
17932,
17933,
17934,
17935,
17936,
17937,
17938
] |
Bodenleger/in
|
[
17932,
17933,
17934,
17935,
17936,
17937,
17938
] |
Lackierer/in und Maler/in
|
[
9861,
9862,
9863,
9864,
9865
] |
Schilderhersteller/in
|
[
13362,
13363,
13364
] |
Spritzlackierer/in
|
[
9861,
9862,
9863,
9864,
9865
] |
Lackiertechniker/in
|
[
9861,
9862,
9863,
9864,
9865
] |
Lackiertechniker/in
|
[
9861,
9862,
9863,
9864,
9865
] |
Glasermeister/in
|
[
8163,
8164,
8165,
8166,
8167
] |
Friedhofsarbeiter/in
|
[
13961,
13962,
13963,
13964,
13965,
13966,
13967
] |
Glaserhelfer/in
|
[
8163,
8164,
8165,
8166,
8167
] |
Lackiererhelfer/in
|
[
9861,
9862,
9863,
9864,
9865
] |
Zeltarbeiter/in
|
[
11787,
11788,
11789
] |
Hüttenarbeiter/in
|
[
3717,
3718,
3719,
3720,
3721,
3722,
3723,
3724,
3725,
3726,
3727,
3728,
3729,
3730,
3731,
3732,
3733,
3734,
3735,
3736,
3737,
3738,
3739,
3740,
3741
] |
Hüttenmeister/in
|
[
3717,
3718,
3719,
3720,
3721,
3722,
3723,
3724,
3725,
3726,
3727,
3728,
3729,
3730,
3731,
3732,
3733,
3734,
3735,
3736,
3737,
3738,
3739,
3740,
3741
] |
Drahtzieher/in
|
[
9999,
10000,
10001,
10002,
10003,
10004,
10005,
10006,
10007,
10008,
10009,
10010,
10011,
10012,
10013,
10014,
10015,
10016,
10017,
10018,
10019,
10020,
10021
] |
Schmelzer/in
|
[
7170,
7171,
7172,
7173,
7174,
7175,
7176
] |
Former/in und Gießer/in (Metall und Eisen)
|
[
7248,
7249,
7250,
7251,
7252,
7253,
7254,
7255,
7256,
7257,
7258
] |
Gießer/in
|
[
17447,
17448,
17449,
17450,
17451
] |
Metallgießer/in
|
[
3717,
3718,
3719,
3720,
3721,
3722,
3723,
3724,
3725,
3726,
3727,
3728,
3729,
3730,
3731,
3732,
3733,
3734,
3735,
3736,
3737,
3738,
3739,
3740,
3741
] |
MELO Benchmark
This dataset contains the Multilingual Entity Linking of Occupations (MELO) Benchmark
for easy loading with the HuggingFace datasets library.
Dataset Description
MELO is a collection of 48 datasets for evaluating the linking of entity mentions in 21 languages to the ESCO Occupations multilingual taxonomy. It was built using high-quality, pre-existent human annotations.
Original paper abstract:
We present the Multilingual Entity Linking of Occupations (MELO) Benchmark, a new collection of 48 datasets for evaluating the linking of entity mentions in 21 languages to the ESCO Occupations multilingual taxonomy. MELO was built using high-quality, pre-existent human annotations. We conduct experiments with simple lexical models and general-purpose sentence encoders, evaluated as bi-encoders in a zero-shot setup, to establish baselines for future research.
Original repository: https://github.com/Avature/melo-benchmark
Dataset Structure
Each subset (configuration) contains two splits:
queries: Query texts with their relevant corpus element indicescorpus: Corpus element texts
Schema
queries split:
| Column | Type | Description |
|---|---|---|
text |
string |
The query surface form |
labels |
list[int] |
Indices of relevant corpus elements |
corpus split:
| Column | Type | Description |
|---|---|---|
text |
string |
The corpus element surface form |
Usage
from datasets import load_dataset
# Load a specific subset
ds = load_dataset("federetyk/MELO-Benchmark", "ita_q_it_c_it")
# Access the data
query_surface_forms = ds["queries"]["text"]
corpus_surface_forms = ds["corpus"]["text"]
label_lists = ds["queries"]["labels"]
# Example: Get relevant corpus texts for the first query
query_idx = 0
print(f"Query: {query_surface_forms[query_idx]}")
print(f"Relevant corpus elements:")
for corpus_idx in label_lists[query_idx]:
print(f" - {corpus_surface_forms[corpus_idx]}")
Available Subsets
The subset names follow the pattern: {country}_q_{query_lang}_c_{corpus_lang(s)}
| Subset ID | Task Name | Source Taxonomy | Query Lang | # Queries | Target Taxonomy | Corpus Lang | # Corpus |
|---|---|---|---|---|---|---|---|
usa_q_en_c_en |
USA-en-en | O*NET | en | 633 | ESCO v1.1.0 | en | 33,813 |
usa_q_en_c_de_en_es_fr_it_nl_pl_pt |
USA-en-xx † | O*NET | en | 633 | ESCO v1.1.0 | xx | 150,140 |
aut_q_de_c_de |
AUT-de-de | Austria | de | 1,120 | ESCO v1.1.0 | de | 19,782 |
aut_q_de_c_en |
AUT-de-en | Austria | de | 1,120 | ESCO v1.1.0 | en | 33,813 |
bel_q_fr_c_fr |
BEL-fr-fr | Belgium | fr | 328 | ESCO v1.0.3 | fr | 15,227 |
bel_q_fr_c_en |
BEL-fr-en | Belgium | fr | 328 | ESCO v1.0.3 | en | 33,609 |
bel_q_nl_c_nl |
BEL-nl-nl | Belgium | nl | 328 | ESCO v1.0.3 | nl | 24,070 |
bel_q_nl_c_en |
BEL-nl-en | Belgium | nl | 328 | ESCO v1.0.3 | en | 33,609 |
bgr_q_bg_c_bg |
BGR-bg-bg | Bulgaria | bg | 4,438 | ESCO v1.0.3 | bg | 21,082 |
bgr_q_bg_c_en |
BGR-bg-en | Bulgaria | bg | 4,438 | ESCO v1.0.3 | en | 33,609 |
cze_q_cs_c_cs |
CZE-cs-cs | Czechia | cs | 988 | ESCO v1.0.9 | cs | 13,333 |
cze_q_cs_c_en |
CZE-cs-en | Czechia | cs | 988 | ESCO v1.0.9 | en | 33,583 |
deu_q_de_c_de |
DEU-de-de | Germany | de | 1,779 | ESCO v1.0.3 | de | 19,135 |
deu_q_de_c_en |
DEU-de-en | Germany | de | 1,779 | ESCO v1.0.3 | en | 33,609 |
dnk_q_da_c_da |
DNK-da-da | Denmark | da | 734 | ESCO v1.0.8 | da | 10,410 |
dnk_q_da_c_en |
DNK-da-en | Denmark | da | 734 | ESCO v1.0.8 | en | 33,583 |
esp_q_es_c_es |
ESP-es-es | Spain | es | 1,580 | ESCO v1.0.8 | es | 16,502 |
esp_q_es_c_en |
ESP-es-en | Spain | es | 1,580 | ESCO v1.0.8 | en | 33,583 |
est_q_et_c_et |
EST-et-et | Estonia | et | 1,068 | ESCO v1.0.8 | et | 4,956 |
est_q_et_c_en |
EST-et-en | Estonia | et | 1,068 | ESCO v1.0.8 | en | 33,583 |
fra_q_fr_c_fr |
FRA-fr-fr | France | fr | 1,435 | ESCO v1.0.9 | fr | 15,217 |
fra_q_fr_c_en |
FRA-fr-en | France | fr | 1,435 | ESCO v1.0.9 | en | 33,583 |
hrv_q_hr_c_hr |
HRV-hr-hr | Croatia | hr | 2,347 | ESCO v1.0.3 | hr | 17,390 |
hrv_q_hr_c_en |
HRV-hr-en | Croatia | hr | 2,347 | ESCO v1.0.3 | en | 33,609 |
hun_q_hu_c_hu |
HUN-hu-hu | Hungary | hu | 362 | ESCO v1.0.8 | hu | 16,923 |
hun_q_hu_c_en |
HUN-hu-en | Hungary | hu | 362 | ESCO v1.0.8 | en | 33,583 |
ita_q_it_c_it |
ITA-it-it | Italy | it | 362 | ESCO v1.0.8 | it | 16,199 |
ita_q_it_c_en |
ITA-it-en | Italy | it | 362 | ESCO v1.0.8 | en | 33,583 |
ltu_q_lt_c_lt |
LTU-lt-lt | Lithuania | lt | 3,849 | ESCO v1.0.8 | lt | 17,824 |
ltu_q_lt_c_en |
LTU-lt-en | Lithuania | lt | 3,849 | ESCO v1.0.8 | en | 33,583 |
lva_q_lv_c_lv |
LVA-lv-lv | Latvia | lv | 3,251 | ESCO v1.0.8 | lv | 9,733 |
lva_q_lv_c_en |
LVA-lv-en | Latvia | lv | 3,251 | ESCO v1.0.8 | en | 33,583 |
nld_q_nl_c_nl |
NLD-nl-nl | Netherlands | nl | 2,605 | ESCO v1.0.3 | nl | 24,070 |
nld_q_nl_c_en |
NLD-nl-en | Netherlands | nl | 2,605 | ESCO v1.0.3 | en | 33,609 |
nor_q_no_c_no |
NOR-no-no | Norway | no | 96 | ESCO v1.0.8 | no | 7,821 |
nor_q_no_c_en |
NOR-no-en | Norway | no | 96 | ESCO v1.0.8 | en | 33,583 |
pol_q_pl_c_pl |
POL-pl-pl | Poland | pl | 1,937 | ESCO v1.0.3 | pl | 8,879 |
pol_q_pl_c_en |
POL-pl-en | Poland | pl | 1,937 | ESCO v1.0.3 | en | 33,609 |
prt_q_pt_c_pt |
PRT-pt-pt | Portugal | pt | 379 | ESCO v1.0.3 | pt | 11,671 |
prt_q_pt_c_en |
PRT-pt-en | Portugal | pt | 379 | ESCO v1.0.3 | en | 33,609 |
rou_q_ro_c_ro |
ROU-ro-ro | Romania | ro | 3,273 | ESCO v1.0.8 | ro | 14,833 |
rou_q_ro_c_en |
ROU-ro-en | Romania | ro | 3,273 | ESCO v1.0.8 | en | 33,583 |
svk_q_sk_c_sk |
SVK-sk-sk | Slovakia | sk | 2,040 | ESCO v1.0.8 | sk | 12,899 |
svk_q_sk_c_en |
SVK-sk-en | Slovakia | sk | 2,040 | ESCO v1.0.8 | en | 33,583 |
svn_q_sl_c_sl |
SVN-sl-sl | Slovenia | sl | 3,222 | ESCO v1.0.8 | sl | 15,487 |
svn_q_sl_c_en |
SVN-sl-en | Slovenia | sl | 3,222 | ESCO v1.0.8 | en | 33,583 |
swe_q_sv_c_sv |
SWE-sv-sv | Sweden | sv | 2,883 | ESCO v1.1.1 | sv | 7,506 |
swe_q_sv_c_en |
SWE-sv-en | Sweden | sv | 2,883 | ESCO v1.1.1 | en | 33,802 |
† The usa_q_en_c_de_en_es_fr_it_nl_pl_pt subset contains a multilingual corpus with texts in German, English, Spanish, French, Italian, Dutch, Polish, and Portuguese.
Subset Naming Convention
{country}: ISO 3166-1 alpha-3 country code (e.g.,itafor Italy,usafor USA)q_{lang}: Query language (ISO 639-1 code)c_{lang(s)}: Corpus language(s) (one or more ISO 639-1 codes)
Examples:
ita_q_it_c_it: Italian queries, Italian corpus (Italy)ita_q_it_c_en: Italian queries, English corpus (Italy)usa_q_en_c_de_en_es_fr_it_nl_pl_pt: English queries, multilingual corpus (USA)
Citation
If you use this dataset, please cite the original MELO Benchmark paper:
@inproceedings{retyk2024melo,
title = {{MELO: An Evaluation Benchmark for Multilingual Entity Linking of Occupations}},
author = {Federico Retyk and Luis Gasco and Casimiro Pio Carrino and Daniel Deniz and Rabih Zbib},
booktitle = {Proceedings of the 4th Workshop on Recommender Systems for Human Resources
(RecSys in {HR} 2024), in conjunction with the 18th {ACM} Conference on
Recommender Systems},
year = {2024},
url = {https://recsyshr.aau.dk/wp-content/uploads/2024/10/RecSysHR2024-paper_2.pdf},
}
License
This dataset is licensed under the MIT License. See the LICENSE file for more information.
- Downloads last month
- 33