text
stringlengths 81
112k
|
|---|
This is a decorator that creates an async with statement around a function, and makes sure that a _session argument is always passed.
Only usable on async functions of course.
The _session argument is (supposed to be) an aiohttp.ClientSession instance in all functions that this decorator has been used on.
This is used to make sure that all session objects are properly entered and exited, or that they are passed into a function properly.
This adds an session keyword argument to the method signature, and that session will be used as _session if it is not None.
def _uses_aiohttp_session(func):
"""This is a decorator that creates an async with statement around a function, and makes sure that a _session argument is always passed.
Only usable on async functions of course.
The _session argument is (supposed to be) an aiohttp.ClientSession instance in all functions that this decorator has been used on.
This is used to make sure that all session objects are properly entered and exited, or that they are passed into a function properly.
This adds an session keyword argument to the method signature, and that session will be used as _session if it is not None."""
# The function the decorator returns
async def decorated_func(*args, session=None, **kwargs):
if session is not None:
# There is a session passed
return await func(*args, _session=session, **kwargs)
else:
# The session argument wasn't passed, so we create our own
async with aiohttp.ClientSession() as new_session:
return await func(*args, _session=new_session, **kwargs)
# We return the decorated func
return decorated_func
|
Adds the ratelimit and request timeout parameters to a function.
def _add_request_parameters(func):
"""Adds the ratelimit and request timeout parameters to a function."""
# The function the decorator returns
async def decorated_func(*args, handle_ratelimit=None, max_tries=None, request_timeout=None, **kwargs):
return await func(*args, handle_ratelimit=handle_ratelimit, max_tries=max_tries,
request_timeout=request_timeout, **kwargs)
# We return the decorated func
return decorated_func
|
Returns the stats for the profiles on the specified regions and platform. The format for regions without a matching user, the format is the same as get_profile.
The stats are returned in a dictionary with a similar format to what https://github.com/SunDwarf/OWAPI/blob/master/api.md#get-apiv3ubattletagstats specifies.
async def get_stats(self, battletag: str, regions=(EUROPE, KOREA, AMERICAS, CHINA, JAPAN, ANY),
platform=None, _session=None, handle_ratelimit=None, max_tries=None, request_timeout=None):
"""Returns the stats for the profiles on the specified regions and platform. The format for regions without a matching user, the format is the same as get_profile.
The stats are returned in a dictionary with a similar format to what https://github.com/SunDwarf/OWAPI/blob/master/api.md#get-apiv3ubattletagstats specifies."""
if platform is None:
platform = self.default_platform
try:
blob_dict = await self._base_request(battletag, "stats", _session, platform=platform,
handle_ratelimit=handle_ratelimit, max_tries=max_tries,
request_timeout=request_timeout)
except ProfileNotFoundError as e:
# The battletag doesn't exist
blob_dict = {}
existing_regions = {key: val for key, val in blob_dict.items() if ((val is not None) and (key != "_request"))}
return {key: [inner_val for inner_key, inner_val in val.items() if inner_key == "stats"][0] for key, val in
existing_regions.items() if key in regions}
|
Does a request to some endpoint. This is also where ratelimit logic is handled.
async def _base_request(self, battle_tag: str, endpoint_name: str, session: aiohttp.ClientSession, *, platform=None,
handle_ratelimit=None, max_tries=None, request_timeout=None):
"""Does a request to some endpoint. This is also where ratelimit logic is handled."""
# We check the different optional arguments, and if they're not passed (are none) we set them to the default for the client object
if platform is None:
platform = self.default_platform
if handle_ratelimit is None:
handle_ratelimit = self.default_handle_ratelimit
if max_tries is None:
max_tries = self.default_max_tries
if request_timeout is None:
request_timeout = self.default_request_timeout
# The battletag with #s removed
san_battle_tag = self.sanitize_battletag(battle_tag)
# The ratelimit logic
for _ in range(max_tries):
# We execute a request
try:
resp_json, status = await self._async_get(
session,
self.server_url + self._api_urlpath + "{battle_tag}/{endpoint}".format(
battle_tag=san_battle_tag,
endpoint=endpoint_name
),
params={"platform": platform},
# Passed to _async_get and indicates what platform we're searching on
headers={"User-Agent": "overwatch_python_api"},
# According to https://github.com/SunDwarf/OWAPI/blob/master/owapi/v3/v3_util.py#L18 we have to customise our User-Agent, so we do
_async_timeout_seconds=request_timeout
)
if status == 429 and resp_json["msg"] == "you are being ratelimited":
raise RatelimitError
except RatelimitError as e:
# This excepts both RatelimitErrors and TimeoutErrors, ratelimiterrors for server returning a ratelimit, timeouterrors for the connection not being done in with in the timeout
# We are ratelimited, so we check if we handle ratelimiting logic
# If so, we wait and then execute the next iteration of the loop
if handle_ratelimit:
# We wait to remedy ratelimiting, and we wait a bit more than the response says we should
await asyncio.sleep(resp_json["retry"] + 1)
continue
else:
raise
else:
# We didn't get an error, so we exit the loop because it was a successful request
break
else:
# The loop didn't stop because it got breaked, which means that we got ratelimited until the maximum number of tries were finished
raise RatelimitError("Got ratelimited for each requests until the maximum number of retries were reached.")
# Validate the response
if status != 200:
if status == 404 and resp_json["msg"] == "profile not found":
raise ProfileNotFoundError(
"Got HTTP 404, profile not found. This is caused by the given battletag not existing on the specified platform.")
if status == 429 and resp_json["msg"] == "you are being ratelimited":
raise RatelimitError(
"Got HTTP 429, you are being ratelimited. This is caused by calls to the api too frequently.")
raise ConnectionError("Did not get HTTP status 200, got: {0}".format(status))
return resp_json
|
Uses aiohttp to make a get request asynchronously.
Will raise asyncio.TimeoutError if the request could not be completed
within _async_timeout_seconds (default 5) seconds.
async def _async_get(self, session: aiohttp.ClientSession, *args, _async_timeout_seconds: int = 5,
**kwargs):
"""Uses aiohttp to make a get request asynchronously.
Will raise asyncio.TimeoutError if the request could not be completed
within _async_timeout_seconds (default 5) seconds."""
# Taken almost directly from the aiohttp tutorial
with async_timeout.timeout(_async_timeout_seconds):
async with session.get(*args, **kwargs) as response:
return await response.json(), response.status
|
Check if argument is a method.
Optionally, we can also check if minimum or maximum arities
(number of accepted arguments) match given minimum and/or maximum.
def is_method(arg, min_arity=None, max_arity=None):
"""Check if argument is a method.
Optionally, we can also check if minimum or maximum arities
(number of accepted arguments) match given minimum and/or maximum.
"""
if not callable(arg):
return False
if not any(is_(arg) for is_ in (inspect.ismethod,
inspect.ismethoddescriptor,
inspect.isbuiltin)):
return False
try:
argnames, varargs, kwargs, defaults = getargspec(arg)
except TypeError:
# On CPython 2.x, built-in methods of file aren't inspectable,
# so if it's file.read() or file.write(), we can't tell it for sure.
# Given how this check is being used, assuming the best is probably
# all we can do here.
return True
else:
if argnames and argnames[0] == 'self':
argnames = argnames[1:]
if min_arity is not None:
actual_min_arity = len(argnames) - len(defaults or ())
assert actual_min_arity >= 0, (
"Minimum arity of %r found to be negative (got %s)!" % (
arg, actual_min_arity))
if int(min_arity) != actual_min_arity:
return False
if max_arity is not None:
actual_max_arity = sys.maxsize if varargs or kwargs else len(argnames)
if int(max_arity) != actual_max_arity:
return False
return True
|
Check if the argument is a readable file-like object.
def _is_readable(self, obj):
"""Check if the argument is a readable file-like object."""
try:
read = getattr(obj, 'read')
except AttributeError:
return False
else:
return is_method(read, max_arity=1)
|
Check if the argument is a writable file-like object.
def _is_writable(self, obj):
"""Check if the argument is a writable file-like object."""
try:
write = getattr(obj, 'write')
except AttributeError:
return False
else:
return is_method(write, min_arity=1, max_arity=1)
|
loops the rungtd1d function below. Figure it's easier to troubleshoot in Python than Fortran.
def run(time: datetime, altkm: float,
glat: Union[float, np.ndarray], glon: Union[float, np.ndarray], *,
f107a: float = None, f107: float = None, Ap: int = None) -> xarray.Dataset:
"""
loops the rungtd1d function below. Figure it's easier to troubleshoot in Python than Fortran.
"""
glat = np.atleast_2d(glat)
glon = np.atleast_2d(glon) # has to be here
# %% altitude 1-D
if glat.size == 1 and glon.size == 1 and isinstance(time, (str, date, datetime, np.datetime64)):
atmos = rungtd1d(time, altkm, glat.squeeze()[()], glon.squeeze()[()],
f107a=f107a, f107=f107, Ap=Ap)
# %% lat/lon grid at 1 altitude
else:
atmos = loopalt_gtd(time, glat, glon, altkm,
f107a=f107a, f107=f107, Ap=Ap)
return atmos
|
loop over location and time
time: datetime or numpy.datetime64 or list of datetime or np.ndarray of datetime
glat: float or 2-D np.ndarray
glon: float or 2-D np.ndarray
altkm: float or list or 1-D np.ndarray
def loopalt_gtd(time: datetime,
glat: Union[float, np.ndarray], glon: Union[float, np.ndarray],
altkm: Union[float, List[float], np.ndarray], *,
f107a: float = None, f107: float = None, Ap: int = None) -> xarray.Dataset:
"""
loop over location and time
time: datetime or numpy.datetime64 or list of datetime or np.ndarray of datetime
glat: float or 2-D np.ndarray
glon: float or 2-D np.ndarray
altkm: float or list or 1-D np.ndarray
"""
glat = np.atleast_2d(glat)
glon = np.atleast_2d(glon)
assert glat.ndim == glon.ndim == 2
times = np.atleast_1d(time)
assert times.ndim == 1
atmos = xarray.Dataset()
for k, t in enumerate(times):
print('computing', t)
for i in range(glat.shape[0]):
for j in range(glat.shape[1]):
# atmos = xarray.concat((atmos, rungtd1d(t, altkm, glat[i,j], glon[i,j])),
# data_vars='minimal',coords='minimal',dim='lon')
atm = rungtd1d(t, altkm, glat[i, j], glon[i, j],
f107a=f107a, f107=f107, Ap=Ap)
atmos = xarray.merge((atmos, atm))
atmos.attrs = atm.attrs
return atmos
|
This is the "atomic" function looped by other functions
def rungtd1d(time: datetime,
altkm: np.ndarray,
glat: float, glon: float, *,
f107a: float = None, f107: float = None, Ap: int = None) -> xarray.Dataset:
"""
This is the "atomic" function looped by other functions
"""
time = todatetime(time)
# %% get solar parameters for date
if f107a and f107a and Ap:
pass
else:
f107Ap = gi.getApF107(time, smoothdays=81)
f107a = f107Ap['f107s'].item()
f107 = f107Ap['f107'].item()
Ap = f107Ap['Ap'].item()
# %% dimensions
altkm = np.atleast_1d(altkm)
assert altkm.ndim == 1
assert isinstance(glon, (int, float))
assert isinstance(glat, (int, float))
# %%
iyd = time.strftime('%y%j')
altkm = np.atleast_1d(altkm)
# %%
dens = np.empty((altkm.size, len(species)))
temp = np.empty((altkm.size, len(ttypes)))
for i, a in enumerate(altkm):
cmd = [str(EXE),
iyd, str(time.hour), str(time.minute), str(time.second),
str(glat), str(glon),
str(f107a), str(f107), str(Ap), str(a)]
ret = subprocess.check_output(cmd,
universal_newlines=True,
stderr=subprocess.DEVNULL)
f = io.StringIO(ret)
dens[i, :] = np.genfromtxt(f, max_rows=1)
temp[i, :] = np.genfromtxt(f, max_rows=1)
dsf = {k: (('time', 'alt_km', 'lat', 'lon'), v[None, :, None, None]) for (k, v) in zip(species, dens.T)}
dsf.update({'Tn': (('time', 'alt_km', 'lat', 'lon'), temp[:, 1][None, :, None, None]),
'Texo': (('time', 'alt_km', 'lat', 'lon'), temp[:, 0][None, :, None, None])})
atmos = xarray.Dataset(dsf,
coords={'time': [time], 'alt_km': altkm, 'lat': [glat], 'lon': [glon], },
attrs={'Ap': Ap, 'f107': f107, 'f107a': f107a,
'species': species})
return atmos
|
Validate the predicate description.
def _validate_desc(self, desc):
"""Validate the predicate description."""
if desc is None:
return desc
if not isinstance(desc, STRING_TYPES):
raise TypeError(
"predicate description for Matching must be a string, "
"got %r" % (type(desc),))
# Python 2 mandates __repr__ to be an ASCII string,
# so if Unicode is passed (usually due to unicode_literals),
# it should be ASCII-encodable.
if not IS_PY3 and isinstance(desc, unicode):
try:
desc = desc.encode('ascii', errors='strict')
except UnicodeEncodeError:
raise TypeError("predicate description must be "
"an ASCII string in Python 2")
return desc
|
Return the placeholder part of matcher's ``__repr__``.
def _get_placeholder_repr(self):
"""Return the placeholder part of matcher's ``__repr__``."""
placeholder = '...'
if self.TRANSFORM is not None:
placeholder = '%s(%s)' % (self.TRANSFORM.__name__, placeholder)
return placeholder
|
Ensure the matcher class definition is acceptable.
:raise RuntimeError: If there is a problem
def _validate_class_definition(meta, classname, bases, dict_):
"""Ensure the matcher class definition is acceptable.
:raise RuntimeError: If there is a problem
"""
# let the BaseMatcher class be created without hassle
if meta._is_base_matcher_class_definition(classname, dict_):
return
# ensure that no important magic methods are being overridden
for name, member in dict_.items():
if not (name.startswith('__') and name.endswith('__')):
continue
# check if it's not a whitelisted magic method name
name = name[2:-2]
if not name:
continue # unlikely case of a ``____`` function
if name not in meta._list_magic_methods(BaseMatcher):
continue
if name in meta.USER_OVERRIDABLE_MAGIC_METHODS:
continue
# non-function attributes, like __slots__, are harmless
if not inspect.isfunction(member):
continue
# classes in this very module are exempt, since they define
# the very behavior of matchers we want to protect
if member.__module__ == __name__:
continue
raise RuntimeError(
"matcher class %s cannot override the __%s__ method" % (
classname, name))
|
Checks whether given class name and dictionary
define the :class:`BaseMatcher`.
def _is_base_matcher_class_definition(meta, classname, dict_):
"""Checks whether given class name and dictionary
define the :class:`BaseMatcher`.
"""
if classname != 'BaseMatcher':
return False
methods = list(filter(inspect.isfunction, dict_.values()))
return methods and all(m.__module__ == __name__ for m in methods)
|
Return names of magic methods defined by a class.
:return: Iterable of magic methods, each w/o the ``__`` prefix/suffix
def _list_magic_methods(meta, class_):
"""Return names of magic methods defined by a class.
:return: Iterable of magic methods, each w/o the ``__`` prefix/suffix
"""
return [
name[2:-2] for name, member in class_.__dict__.items()
if len(name) > 4 and name.startswith('__') and name.endswith('__')
and inspect.isfunction(member)
]
|
if (!(this instanceof SemVer))
return new SemVer(version, loose);
def semver(version, loose):
if isinstance(version, SemVer):
if version.loose == loose:
return version
else:
version = version.version
elif not isinstance(version, str): # xxx:
raise InvalidTypeIncluded("must be str, but {!r}".format(version))
"""
if (!(this instanceof SemVer))
return new SemVer(version, loose);
"""
return SemVer(version, loose)
|
Handler for the event emitted when autodoc processes a docstring.
See http://sphinx-doc.org/ext/autodoc.html#event-autodoc-process-docstring.
The TL;DR is that we can modify ``lines`` in-place to influence the output.
def autodoc_process_docstring(app, what, name, obj, options, lines):
"""Handler for the event emitted when autodoc processes a docstring.
See http://sphinx-doc.org/ext/autodoc.html#event-autodoc-process-docstring.
The TL;DR is that we can modify ``lines`` in-place to influence the output.
"""
# check that only symbols that can be directly imported from ``callee``
# package are being documented
_, symbol = name.rsplit('.', 1)
if symbol not in callee.__all__:
raise SphinxError(
"autodoc'd '%s' is not a part of the public API!" % name)
# for classes exempt from automatic merging of class & __init__ docs,
# pretend their __init__ methods have no docstring at all,
# so that nothing will be appended to the class's docstring
if what == 'class' and name in autoclass_content_exceptions:
# amusingly, when autodoc reads the constructor's docstring
# for appending it to class docstring, it will report ``what``
# as 'class' (again!); hence we must check what it actually read
ctor_docstring_lines = prepare_docstring(obj.__init__.__doc__)
if lines == ctor_docstring_lines:
lines[:] = []
|
Raise ValidationError if the contact exists.
def clean_email(self):
""" Raise ValidationError if the contact exists. """
contacts = self.api.lists.contacts(id=self.list_id)['result']
for contact in contacts:
if contact['email'] == self.cleaned_data['email']:
raise forms.ValidationError(
_(u'This email is already subscribed'))
return self.cleaned_data['email']
|
Create a contact with using the email on the list.
def add_contact(self):
""" Create a contact with using the email on the list. """
self.api.lists.addcontact(
contact=self.cleaned_data['email'], id=self.list_id, method='POST')
|
Get or create an Api() instance using django settings.
def api(self):
""" Get or create an Api() instance using django settings. """
api = getattr(self, '_api', None)
if api is None:
self._api = mailjet.Api()
return self._api
|
Get or create the list id.
def list_id(self):
""" Get or create the list id. """
list_id = getattr(self, '_list_id', None)
if list_id is None:
for l in self.api.lists.all()['lists']:
if l['name'] == self.list_name:
self._list_id = l['id']
if not getattr(self, '_list_id', None):
self._list_id = self.api.lists.create(
label=self.list_label, name=self.list_name,
method='POST')['list_id']
return self._list_id
|
Portable version of inspect.getargspec().
Necessary because the original is no longer available
starting from Python 3.6.
:return: 4-tuple of (argnames, varargname, kwargname, defaults)
Note that distinction between positional-or-keyword and keyword-only
parameters will be lost, as the original getargspec() doesn't honor it.
def getargspec(obj):
"""Portable version of inspect.getargspec().
Necessary because the original is no longer available
starting from Python 3.6.
:return: 4-tuple of (argnames, varargname, kwargname, defaults)
Note that distinction between positional-or-keyword and keyword-only
parameters will be lost, as the original getargspec() doesn't honor it.
"""
try:
return inspect.getargspec(obj)
except AttributeError:
pass # we let a TypeError through
# translate the signature object back into the 4-tuple
argnames = []
varargname, kwargname = None, None
defaults = []
for name, param in inspect.signature(obj):
if param.kind == inspect.Parameter.VAR_POSITIONAL:
varargname = name
elif param.kind == inspect.Parameter.VAR_KEYWORD:
kwargname = name
else:
argnames.append(name)
if param.default is not inspect.Parameter.empty:
defaults.append(param.default)
defaults = defaults or None
return argnames, varargname, kwargname, defaults
|
Reads values of "magic tags" defined in the given Python file.
:param filename: Python filename to read the tags from
:return: Dictionary of tags
def read_tags(filename):
"""Reads values of "magic tags" defined in the given Python file.
:param filename: Python filename to read the tags from
:return: Dictionary of tags
"""
with open(filename) as f:
ast_tree = ast.parse(f.read(), filename)
res = {}
for node in ast.walk(ast_tree):
if type(node) is not ast.Assign:
continue
target = node.targets[0]
if type(target) is not ast.Name:
continue
if not (target.id.startswith('__') and target.id.endswith('__')):
continue
name = target.id[2:-2]
res[name] = ast.literal_eval(node.value)
return res
|
Normalize any unicode characters to ascii equivalent
https://docs.python.org/2/library/unicodedata.html#unicodedata.normalize
def normalize_unicode(text):
"""
Normalize any unicode characters to ascii equivalent
https://docs.python.org/2/library/unicodedata.html#unicodedata.normalize
"""
if isinstance(text, six.text_type):
return unicodedata.normalize('NFKD', text).encode('ascii', 'ignore').decode('utf8')
else:
return text
|
Parses the given text and yields tokens which represent words within
the given text. Tokens are assumed to be divided by any form of
whitespace character.
def word_tokenize(text, stopwords=_stopwords, ngrams=None, min_length=0, ignore_numeric=True):
"""
Parses the given text and yields tokens which represent words within
the given text. Tokens are assumed to be divided by any form of
whitespace character.
"""
if ngrams is None:
ngrams = 1
text = re.sub(re.compile('\'s'), '', text) # Simple heuristic
text = re.sub(_re_punctuation, '', text)
matched_tokens = re.findall(_re_token, text.lower())
for tokens in get_ngrams(matched_tokens, ngrams):
for i in range(len(tokens)):
tokens[i] = tokens[i].strip(punctuation)
if len(tokens[i]) < min_length or tokens[i] in stopwords:
break
if ignore_numeric and isnumeric(tokens[i]):
break
else:
yield tuple(tokens)
|
attempt to build using CMake >= 3
def cmake_setup():
"""
attempt to build using CMake >= 3
"""
cmake_exe = shutil.which('cmake')
if not cmake_exe:
raise FileNotFoundError('CMake not available')
wopts = ['-G', 'MinGW Makefiles', '-DCMAKE_SH="CMAKE_SH-NOTFOUND'] if os.name == 'nt' else []
subprocess.check_call([cmake_exe] + wopts + [str(SRCDIR)],
cwd=BINDIR)
ret = subprocess.run([cmake_exe, '--build', str(BINDIR)],
stderr=subprocess.PIPE,
universal_newlines=True)
result(ret)
|
attempt to build with Meson + Ninja
def meson_setup():
"""
attempt to build with Meson + Ninja
"""
meson_exe = shutil.which('meson')
ninja_exe = shutil.which('ninja')
if not meson_exe or not ninja_exe:
raise FileNotFoundError('Meson or Ninja not available')
if not (BINDIR / 'build.ninja').is_file():
subprocess.check_call([meson_exe, str(SRCDIR)], cwd=BINDIR)
ret = subprocess.run(ninja_exe, cwd=BINDIR, stderr=subprocess.PIPE,
universal_newlines=True)
result(ret)
|
Adds an occurrence of the term in the specified document.
def add_term_occurrence(self, term, document):
"""
Adds an occurrence of the term in the specified document.
"""
if document not in self._documents:
self._documents[document] = 0
if term not in self._terms:
if self._freeze:
return
else:
self._terms[term] = collections.Counter()
if document not in self._terms[term]:
self._terms[term][document] = 0
self._documents[document] += 1
self._terms[term][document] += 1
|
Gets the frequency of the specified term in the entire corpus
added to the HashedIndex.
def get_total_term_frequency(self, term):
"""
Gets the frequency of the specified term in the entire corpus
added to the HashedIndex.
"""
if term not in self._terms:
raise IndexError(TERM_DOES_NOT_EXIST)
return sum(self._terms[term].values())
|
Returns the frequency of the term specified in the document.
def get_term_frequency(self, term, document, normalized=False):
"""
Returns the frequency of the term specified in the document.
"""
if document not in self._documents:
raise IndexError(DOCUMENT_DOES_NOT_EXIST)
if term not in self._terms:
raise IndexError(TERM_DOES_NOT_EXIST)
result = self._terms[term].get(document, 0)
if normalized:
result /= self.get_document_length(document)
return float(result)
|
Returns the number of documents the specified term appears in.
def get_document_frequency(self, term):
"""
Returns the number of documents the specified term appears in.
"""
if term not in self._terms:
raise IndexError(TERM_DOES_NOT_EXIST)
else:
return len(self._terms[term])
|
Returns the number of terms found within the specified document.
def get_document_length(self, document):
"""
Returns the number of terms found within the specified document.
"""
if document in self._documents:
return self._documents[document]
else:
raise IndexError(DOCUMENT_DOES_NOT_EXIST)
|
Returns all documents related to the specified term in the
form of a Counter object.
def get_documents(self, term):
"""
Returns all documents related to the specified term in the
form of a Counter object.
"""
if term not in self._terms:
raise IndexError(TERM_DOES_NOT_EXIST)
else:
return self._terms[term]
|
Returns the Term-Frequency Inverse-Document-Frequency value for the given
term in the specified document. If normalized is True, term frequency will
be divided by the document length.
def get_tfidf(self, term, document, normalized=False):
"""
Returns the Term-Frequency Inverse-Document-Frequency value for the given
term in the specified document. If normalized is True, term frequency will
be divided by the document length.
"""
tf = self.get_term_frequency(term, document)
# Speeds up performance by avoiding extra calculations
if tf != 0.0:
# Add 1 to document frequency to prevent divide by 0
# (Laplacian Correction)
df = 1 + self.get_document_frequency(term)
n = 2 + len(self._documents)
if normalized:
tf /= self.get_document_length(document)
return tf * math.log10(n / df)
else:
return 0.0
|
Returns a representation of the specified document as a feature vector
weighted according the mode specified (by default tf-dif).
A custom weighting function can also be passed which receives the hashedindex
instance, the selected term and document as parameters.
The result will be returned in the form of a list. This can be converted
into a numpy array if required using the `np.asarray` method
Available built-in modes:
* tfidf: Term Frequency Inverse Document Frequency
* ntfidf: Normalized Term Frequency Inverse Document Frequency
* tf: Term Frequency
* ntf: Normalized Term Frequency
def generate_document_vector(self, doc, mode='tfidf'):
"""
Returns a representation of the specified document as a feature vector
weighted according the mode specified (by default tf-dif).
A custom weighting function can also be passed which receives the hashedindex
instance, the selected term and document as parameters.
The result will be returned in the form of a list. This can be converted
into a numpy array if required using the `np.asarray` method
Available built-in modes:
* tfidf: Term Frequency Inverse Document Frequency
* ntfidf: Normalized Term Frequency Inverse Document Frequency
* tf: Term Frequency
* ntf: Normalized Term Frequency
"""
if mode == 'tfidf':
selected_function = HashedIndex.get_tfidf
elif mode == 'ntfidf':
selected_function = functools.partial(HashedIndex.get_tfidf, normalized=True)
elif mode == 'tf':
selected_function = HashedIndex.get_term_frequency
elif mode == 'ntf':
selected_function = functools.partial(HashedIndex.get_term_frequency, normalized=True)
elif hasattr(mode, '__call__'):
selected_function = mode
else:
raise ValueError('Unexpected mode: %s', mode)
result = []
for term in self._terms:
result.append(selected_function(self, term, doc))
return result
|
Returns a feature matrix in the form of a list of lists which
represents the terms and documents in this Inverted Index using
the tf-idf weighting by default. The term counts in each
document can alternatively be used by specifying scheme='count'.
A custom weighting function can also be passed which receives a term
and document as parameters.
The size of the matrix is equal to m x n where m is
the number of documents and n is the number of terms.
The list-of-lists format returned by this function can be very easily
converted to a numpy matrix if required using the `np.as_matrix`
method.
def generate_feature_matrix(self, mode='tfidf'):
"""
Returns a feature matrix in the form of a list of lists which
represents the terms and documents in this Inverted Index using
the tf-idf weighting by default. The term counts in each
document can alternatively be used by specifying scheme='count'.
A custom weighting function can also be passed which receives a term
and document as parameters.
The size of the matrix is equal to m x n where m is
the number of documents and n is the number of terms.
The list-of-lists format returned by this function can be very easily
converted to a numpy matrix if required using the `np.as_matrix`
method.
"""
result = []
for doc in self._documents:
result.append(self.generate_document_vector(doc, mode))
return result
|
Returns the first occurrence of an instance of type `klass` in
the given list, or None if no such instance is present.
def find_class_in_list(klass, lst):
"""
Returns the first occurrence of an instance of type `klass` in
the given list, or None if no such instance is present.
"""
filtered = list(filter(lambda x: x.__class__ == klass, lst))
if filtered:
return filtered[0]
return None
|
Returns a tuple containing an entry corresponding to each of
the requested class types, where the entry is either the first
object instance of that type or None of no such instances are
available.
Example Usage:
find_classes_in_list(
[Address, Response],
[<classes.Response...>, <classes.Amount...>, <classes.Address...>])
Produces: (<classes.Address...>, <classes.Response...>)
def find_classes_in_list(klasses, lst):
"""
Returns a tuple containing an entry corresponding to each of
the requested class types, where the entry is either the first
object instance of that type or None of no such instances are
available.
Example Usage:
find_classes_in_list(
[Address, Response],
[<classes.Response...>, <classes.Amount...>, <classes.Address...>])
Produces: (<classes.Address...>, <classes.Response...>)
"""
if not isinstance(klasses, list):
klasses = [klasses]
return tuple(map(lambda klass: find_class_in_list(klass, lst), klasses))
|
Converts a dictionary of name and value pairs into a
PARMLIST string value acceptable to the Payflow Pro API.
def _build_parmlist(self, parameters):
"""
Converts a dictionary of name and value pairs into a
PARMLIST string value acceptable to the Payflow Pro API.
"""
args = []
for key, value in parameters.items():
if not value is None:
# We always use the explicit-length keyname format, to reduce the chance
# of requests failing due to unusual characters in parameter values.
try:
classinfo = unicode
except NameError:
classinfo = str
if isinstance(value, classinfo):
key = '%s[%d]' % (key.upper(), len(value.encode('utf-8')))
else:
key = '%s[%d]' % (key.upper(), len(str(value)))
args.append('%s=%s' % (key, value))
args.sort()
parmlist = '&'.join(args)
return parmlist
|
Parses a PARMLIST string into a dictionary of name and value
pairs. The parsing is complicated by the following:
- parameter keynames may or may not include a length
specification
- delimiter characters (=, &) may appear inside parameter
values, provided the parameter has an explicit length.
For example, the following parmlist values are possible:
A=B&C=D
A[1]=B&C[1]=D
A=B&C[1]=D
A[3]=B&B&C[1]=D (Here, the value of A is "B&B")
A[1]=B&C[3]=D=7 (Here, the value of C is "D=7")
def _parse_parmlist(self, parmlist):
"""
Parses a PARMLIST string into a dictionary of name and value
pairs. The parsing is complicated by the following:
- parameter keynames may or may not include a length
specification
- delimiter characters (=, &) may appear inside parameter
values, provided the parameter has an explicit length.
For example, the following parmlist values are possible:
A=B&C=D
A[1]=B&C[1]=D
A=B&C[1]=D
A[3]=B&B&C[1]=D (Here, the value of A is "B&B")
A[1]=B&C[3]=D=7 (Here, the value of C is "D=7")
"""
parmlist = "&" + parmlist
name_re = re.compile(r'\&([A-Z0-9_]+)(\[\d+\])?=')
results = {}
offset = 0
match = name_re.search(parmlist, offset)
while match:
name, len_suffix = match.groups()
offset = match.end()
if len_suffix:
val_len = int(len_suffix[1:-1])
else:
next_match = name_re.search(parmlist, offset)
if next_match:
val_len = next_match.start() - match.end()
else:
# At end of parmlist
val_len = len(parmlist) - match.end()
value = parmlist[match.end() : match.end() + val_len]
results[name.lower()] = value
match = name_re.search(parmlist, offset)
return results
|
Send a http request to the given *url*, try to decode
the reply assuming it's JSON in UTF-8, and return the result
:returns: Decoded result, or None in case of an error
:rtype: mixed
def request(self, url):
"""
Send a http request to the given *url*, try to decode
the reply assuming it's JSON in UTF-8, and return the result
:returns: Decoded result, or None in case of an error
:rtype: mixed
"""
self.logger.debug('url:\n' + url)
try:
response = urlopen(url)
return json.loads(response.read().decode('utf-8'))
except URLError:
self.logger.info('Server connection problem')
except Exception:
self.logger.info('Server format problem')
|
Issue a geocoding query for *address* to the
Nominatim instance and return the decoded results
:param address: a query string with an address
or presumed parts of an address
:type address: str or (if python2) unicode
:param acceptlanguage: rfc2616 language code
:type acceptlanguage: str or None
:param limit: limit the number of results
:type limit: int or None
:param countrycodes: restrict the search to countries
given by their ISO 3166-1alpha2 codes (cf.
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2 )
:type countrycodes: str iterable
:returns: a list of search results (each a dict)
:rtype: list or None
def query(self, address, acceptlanguage=None, limit=20,
countrycodes=None):
"""
Issue a geocoding query for *address* to the
Nominatim instance and return the decoded results
:param address: a query string with an address
or presumed parts of an address
:type address: str or (if python2) unicode
:param acceptlanguage: rfc2616 language code
:type acceptlanguage: str or None
:param limit: limit the number of results
:type limit: int or None
:param countrycodes: restrict the search to countries
given by their ISO 3166-1alpha2 codes (cf.
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2 )
:type countrycodes: str iterable
:returns: a list of search results (each a dict)
:rtype: list or None
"""
url = self.url + '&q=' + quote_plus(address)
if acceptlanguage:
url += '&accept-language=' + acceptlanguage
if limit:
url += '&limit=' + str(limit)
if countrycodes:
url += '&countrycodes=' + ','.join(countrycodes)
return self.request(url)
|
Issue a reverse geocoding query for a place given
by *lat* and *lon*, or by *osm_id* and *osm_type*
to the Nominatim instance and return the decoded results
:param lat: the geograpical latitude of the place
:param lon: the geograpical longitude of the place
:param osm_id: openstreetmap identifier osm_id
:type osm_id: str
:param osm_type: openstreetmap type osm_type
:type osm_type: str
:param acceptlanguage: rfc2616 language code
:type acceptlanguage: str or None
:param zoom: zoom factor between from 0 to 18
:type zoom: int or None or a key in :data:`zoom_aliases`
:param countrycodes: restrict the search to countries
given by their ISO 3166-1alpha2 codes (cf.
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2 )
:type countrycodes: str iterable
:returns: a list of search results (each a dict)
:rtype: list or None
:raise: NominatimException if invalid zoom value
def query(self, lat=None, lon=None, osm_id=None, osm_type=None,
acceptlanguage='', zoom=18):
"""
Issue a reverse geocoding query for a place given
by *lat* and *lon*, or by *osm_id* and *osm_type*
to the Nominatim instance and return the decoded results
:param lat: the geograpical latitude of the place
:param lon: the geograpical longitude of the place
:param osm_id: openstreetmap identifier osm_id
:type osm_id: str
:param osm_type: openstreetmap type osm_type
:type osm_type: str
:param acceptlanguage: rfc2616 language code
:type acceptlanguage: str or None
:param zoom: zoom factor between from 0 to 18
:type zoom: int or None or a key in :data:`zoom_aliases`
:param countrycodes: restrict the search to countries
given by their ISO 3166-1alpha2 codes (cf.
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2 )
:type countrycodes: str iterable
:returns: a list of search results (each a dict)
:rtype: list or None
:raise: NominatimException if invalid zoom value
"""
url = self.url
if osm_id is not None and osm_type not in ('N', 'W', 'R'):
raise NominatimException('invalid osm_type')
if osm_id is not None and osm_type is not None:
url += '&osm_id=' + osm_id + '&osm_type=' + osm_type
elif lat is not None and lon is not None:
url += '&lat=' + str(lat) + '&lon=' + str(lon)
else:
return None
if acceptlanguage:
url += '&accept-language=' + acceptlanguage
if zoom in zoom_aliases:
zoom = zoom_aliases[zoom]
if not isinstance(zoom, int) or zoom < 0 or zoom > 18:
raise NominatimException('zoom must effectively be betwen 0 and 18')
url +='&zoom=' + str(zoom)
return self.request(url)
|
Define a grid using the specifications of a given model.
Parameters
----------
model_name : string
Name the model (see :func:`get_supported_models` for available
model names).
Supports multiple formats (e.g., 'GEOS5', 'GEOS-5' or 'GEOS_5').
**kwargs : string
Parameters that override the model or default grid
settings (See Other Parameters below).
Returns
-------
A :class:`CTMGrid` object.
Other Parameters
----------------
resolution : (float, float)
Horizontal grid resolution (lon, lat) or (DI, DJ) [degrees]
Psurf : float
Average surface pressure [hPa] (default: 1013.15)
Notes
-----
Regridded vertical models may have several valid names (e.g.,
'GEOS5_47L' and 'GEOS5_REDUCED' refer to the same model).
def from_model(cls, model_name, **kwargs):
"""
Define a grid using the specifications of a given model.
Parameters
----------
model_name : string
Name the model (see :func:`get_supported_models` for available
model names).
Supports multiple formats (e.g., 'GEOS5', 'GEOS-5' or 'GEOS_5').
**kwargs : string
Parameters that override the model or default grid
settings (See Other Parameters below).
Returns
-------
A :class:`CTMGrid` object.
Other Parameters
----------------
resolution : (float, float)
Horizontal grid resolution (lon, lat) or (DI, DJ) [degrees]
Psurf : float
Average surface pressure [hPa] (default: 1013.15)
Notes
-----
Regridded vertical models may have several valid names (e.g.,
'GEOS5_47L' and 'GEOS5_REDUCED' refer to the same model).
"""
settings = _get_model_info(model_name)
model = settings.pop('model_name')
for k, v in list(kwargs.items()):
if k in ('resolution', 'Psurf'):
settings[k] = v
return cls(model, **settings)
|
Set-up a user-defined grid using specifications of a reference
grid model.
Parameters
----------
model_name : string
name of the user-defined grid model.
reference : string or :class:`CTMGrid` instance
Name of the reference model (see :func:`get_supported_models`),
or a :class:`CTMGrid` object from which grid set-up is copied.
**kwargs
Any set-up parameter which will override the settings of the
reference model (see :class:`CTMGrid` parameters).
Returns
-------
A :class:`CTMGrid` object.
def copy_from_model(cls, model_name, reference, **kwargs):
"""
Set-up a user-defined grid using specifications of a reference
grid model.
Parameters
----------
model_name : string
name of the user-defined grid model.
reference : string or :class:`CTMGrid` instance
Name of the reference model (see :func:`get_supported_models`),
or a :class:`CTMGrid` object from which grid set-up is copied.
**kwargs
Any set-up parameter which will override the settings of the
reference model (see :class:`CTMGrid` parameters).
Returns
-------
A :class:`CTMGrid` object.
"""
if isinstance(reference, cls):
settings = reference.__dict__.copy()
settings.pop('model')
else:
settings = _get_model_info(reference)
settings.pop('model_name')
settings.update(kwargs)
settings['reference'] = reference
return cls(model_name, **settings)
|
Compute scalars or coordinates associated to the vertical layers.
Parameters
----------
grid_spec : CTMGrid object
CTMGrid containing the information necessary to re-construct grid
levels for a given model coordinate system.
Returns
-------
dictionary of vertical grid components, including eta (unitless),
sigma (unitless), pressure (hPa), and altitude (km) on both layer centers
and edges, ordered from bottom-to-top.
Notes
-----
For pure sigma grids, sigma coordinates are given by the esig (edges) and
csig (centers).
For both pure sigma and hybrid grids, pressures at layers edges L are
calculated as follows:
.. math:: P_e(L) = A_p(L) + B_p(L) * (P_{surf} - C_p)
where
:math:`P_{surf}`, :math:`P_{top}`
Air pressures at the surface and the top of the modeled atmosphere
(:attr:`Psurf` and :attr:`Ptop` attributes of the :class:`CTMGrid`
instance).
:math:`A_p(L)`, :math:`Bp(L)`
Specified in the grid set-up (`Ap` and `Bp` attributes) for hybrid
grids, or respectively equals :math:`P_{top}` and :attr:`esig`
attribute for pure sigma grids.
:math:`Cp(L)`
equals :math:`P_{top}` for pure sigma grids or equals 0 for hybrid
grids.
Pressures at grid centers are averages of pressures at grid edges:
.. math:: P_c(L) = (P_e(L) + P_e(L+1)) / 2
For hybrid grids, ETA coordinates of grid edges and grid centers are
given by;
.. math:: ETA_{e}(L) = (P_e(L) - P_{top}) / (P_{surf} - P_{top})
.. math:: ETA_{c}(L) = (P_c(L) - P_{top}) / (P_{surf} - P_{top})
Altitude values are fit using a 5th-degree polynomial; see
`gridspec.prof_altitude` for more details.
def get_layers(self, Psurf=1013.25, Ptop=0.01, **kwargs):
"""
Compute scalars or coordinates associated to the vertical layers.
Parameters
----------
grid_spec : CTMGrid object
CTMGrid containing the information necessary to re-construct grid
levels for a given model coordinate system.
Returns
-------
dictionary of vertical grid components, including eta (unitless),
sigma (unitless), pressure (hPa), and altitude (km) on both layer centers
and edges, ordered from bottom-to-top.
Notes
-----
For pure sigma grids, sigma coordinates are given by the esig (edges) and
csig (centers).
For both pure sigma and hybrid grids, pressures at layers edges L are
calculated as follows:
.. math:: P_e(L) = A_p(L) + B_p(L) * (P_{surf} - C_p)
where
:math:`P_{surf}`, :math:`P_{top}`
Air pressures at the surface and the top of the modeled atmosphere
(:attr:`Psurf` and :attr:`Ptop` attributes of the :class:`CTMGrid`
instance).
:math:`A_p(L)`, :math:`Bp(L)`
Specified in the grid set-up (`Ap` and `Bp` attributes) for hybrid
grids, or respectively equals :math:`P_{top}` and :attr:`esig`
attribute for pure sigma grids.
:math:`Cp(L)`
equals :math:`P_{top}` for pure sigma grids or equals 0 for hybrid
grids.
Pressures at grid centers are averages of pressures at grid edges:
.. math:: P_c(L) = (P_e(L) + P_e(L+1)) / 2
For hybrid grids, ETA coordinates of grid edges and grid centers are
given by;
.. math:: ETA_{e}(L) = (P_e(L) - P_{top}) / (P_{surf} - P_{top})
.. math:: ETA_{c}(L) = (P_c(L) - P_{top}) / (P_{surf} - P_{top})
Altitude values are fit using a 5th-degree polynomial; see
`gridspec.prof_altitude` for more details.
"""
Psurf = np.asarray(Psurf)
output_ndims = Psurf.ndim + 1
if output_ndims > 3:
raise ValueError("`Psurf` argument must be a float or an array"
" with <= 2 dimensions (or None)")
# Compute all variables: takes not much memory, fast
# and better for code reading
SIGe = None
SIGc = None
ETAe = None
ETAc = None
if self.hybrid:
try:
Ap = broadcast_1d_array(self.Ap, output_ndims)
Bp = broadcast_1d_array(self.Bp, output_ndims)
except KeyError:
raise ValueError("Impossible to compute vertical levels,"
" data is missing (Ap, Bp)")
Cp = 0.
else:
try:
Bp = SIGe = broadcast_1d_array(self.esig, output_ndims)
SIGc = broadcast_1d_array(self.csig, output_ndims)
except KeyError:
raise ValueError("Impossible to compute vertical levels,"
" data is missing (esig, csig)")
Ap = Cp = Ptop
Pe = Ap + Bp * (Psurf - Cp)
Pc = 0.5 * (Pe[0:-1] + Pe[1:])
if self.hybrid:
ETAe = (Pe - Ptop)/(Psurf - Ptop)
ETAc = (Pc - Ptop)/(Psurf - Ptop)
else:
SIGe = SIGe * np.ones_like(Psurf)
SIGc = SIGc * np.ones_like(Psurf)
Ze = prof_altitude(Pe, **kwargs)
Zc = prof_altitude(Pc, **kwargs)
all_vars = {'eta_edges': ETAe,
'eta_centers': ETAc,
'sigma_edges': SIGe,
'sigma_centers': SIGc,
'pressure_edges': Pe,
'pressure_centers': Pc,
'altitude_edges': Ze,
'altitude_centers': Zc}
return all_vars
|
Calculate longitude-latitude grid for a specified resolution and
configuration / ordering.
Parameters
----------
rlon, rlat : float
Resolution (in degrees) of longitude and latitude grids.
halfpolar : bool (default=True)
Polar grid boxes span half of rlat relative to the other grid cells.
center180 : bool (default=True)
Longitude grid should be centered at 180 degrees.
def get_lonlat(self):
"""
Calculate longitude-latitude grid for a specified resolution and
configuration / ordering.
Parameters
----------
rlon, rlat : float
Resolution (in degrees) of longitude and latitude grids.
halfpolar : bool (default=True)
Polar grid boxes span half of rlat relative to the other grid cells.
center180 : bool (default=True)
Longitude grid should be centered at 180 degrees.
"""
rlon, rlat = self.resolution
# Compute number of grid cells in each direction
Nlon = int(360. / rlon)
Nlat = int(180. / rlat) + self.halfpolar
# Compute grid cell edges
elon = np.arange(Nlon + 1) * rlon - np.array(180.)
elon -= rlon / 2. * self.center180
elat = np.arange(Nlat + 1) * rlat - np.array(90.)
elat -= rlat / 2. * self.halfpolar
elat[0] = -90.
elat[-1] = 90.
# Compute grid cell centers
clon = (elon - (rlon / 2.))[1:]
clat = np.arange(Nlat) * rlat - np.array(90.)
# Fix grid boundaries if halfpolar
if self.halfpolar:
clat[0] = (elat[0] + elat[1]) / 2.
clat[-1] = -clat[0]
else:
clat += (elat[1] - elat[0]) / 2.
return {
"lon_centers": clon, "lat_centers": clat,
"lon_edges": elon, "lat_edges": elat
}
|
existing directories where to search for jinja2 templates. The order
is important. The first found template from the first found dir wins!
def _get_template_dirs():
"""existing directories where to search for jinja2 templates. The order
is important. The first found template from the first found dir wins!"""
return filter(lambda x: os.path.exists(x), [
# user dir
os.path.join(os.path.expanduser('~'), '.py2pack', 'templates'),
# system wide dir
os.path.join('/', 'usr', 'share', 'py2pack', 'templates'),
# usually inside the site-packages dir
os.path.join(os.path.dirname(os.path.abspath(__file__)), 'templates'),
])
|
try to get a license from the classifiers
def _license_from_classifiers(data):
"""try to get a license from the classifiers"""
classifiers = data.get('classifiers', [])
found_license = None
for c in classifiers:
if c.startswith("License :: OSI Approved :: "):
found_license = c.replace("License :: OSI Approved :: ", "")
return found_license
|
try to get SDPX license
def _normalize_license(data):
"""try to get SDPX license"""
license = data.get('license', None)
if not license:
# try to get license from classifiers
license = _license_from_classifiers(data)
if license:
if license in SDPX_LICENSES.keys():
data['license'] = SDPX_LICENSES[license]
else:
data['license'] = "%s (FIXME:No SPDX)" % (license)
else:
data['license'] = ""
|
Wrap an IPython's Prompt class
This is needed in order for Prompt to inject the correct escape sequences
at the right positions for shell integrations.
def wrap_prompts_class(Klass):
"""
Wrap an IPython's Prompt class
This is needed in order for Prompt to inject the correct escape sequences
at the right positions for shell integrations.
"""
try:
from prompt_toolkit.token import ZeroWidthEscape
except ImportError:
return Klass
class ITerm2IPythonPrompt(Klass):
def in_prompt_tokens(self, cli=None):
return [
(ZeroWidthEscape, last_status(self.shell)+BEFORE_PROMPT),
]+\
super(ITerm2IPythonPrompt, self).in_prompt_tokens(cli)+\
[(ZeroWidthEscape, AFTER_PROMPT)]
return ITerm2IPythonPrompt
|
A generator which yields a list of all valid keys starting at the
given `start` offset. If `start` is `None`, we will start from
the root of the tree.
def get_all_keys(self, start=None):
"""
A generator which yields a list of all valid keys starting at the
given `start` offset. If `start` is `None`, we will start from
the root of the tree.
"""
s = self.stream
if not start:
start = HEADER_SIZE + self.block_size * self.root_block
s.seek(start)
block_type = s.read(2)
if block_type == LEAF:
reader = LeafReader(self)
num_keys = struct.unpack('>i', reader.read(4))[0]
for _ in range(num_keys):
cur_key = reader.read(self.key_size)
# We to a tell/seek here so that the user can read from
# the file while this loop is still being run
cur_pos = s.tell()
yield cur_key
s.seek(cur_pos)
length = sbon.read_varint(reader)
reader.seek(length, 1)
elif block_type == INDEX:
(_, num_keys, first_child) = struct.unpack('>Bii', s.read(9))
children = [first_child]
for _ in range(num_keys):
# Skip the key field.
_ = s.read(self.key_size)
# Read pointer to the child block.
next_child = struct.unpack('>i', s.read(4))[0]
children.append(next_child)
for child_loc in children:
for key in self.get_all_keys(HEADER_SIZE + self.block_size * child_loc):
yield key
elif block_type == FREE:
pass
else:
raise Exception('Unhandled block type: {}'.format(block_type))
|
Replace the `*` placeholder in a format string (fmt), so that
struct.calcsize(fmt) is equal to the given `size` using the format
following the placeholder.
Raises `ValueError` if number of `*` is larger than 1. If no `*`
in `fmt`, returns `fmt` without checking its size!
Examples
--------
>>> _replace_star('ii*fi', 40)
'ii7fi'
def _replace_star(fmt, size):
"""
Replace the `*` placeholder in a format string (fmt), so that
struct.calcsize(fmt) is equal to the given `size` using the format
following the placeholder.
Raises `ValueError` if number of `*` is larger than 1. If no `*`
in `fmt`, returns `fmt` without checking its size!
Examples
--------
>>> _replace_star('ii*fi', 40)
'ii7fi'
"""
n_stars = fmt.count('*')
if n_stars > 1:
raise ValueError("More than one `*` in format (%s)." % fmt)
if n_stars:
i = fmt.find('*')
s = struct.calcsize(fmt.replace(fmt[i:i + 2], ''))
n = old_div((size - s), struct.calcsize(fmt[i + 1]))
fmt = fmt.replace('*', str(n))
return fmt
|
Read pre- or suffix of line at current position with given
format `fmt` (default 'i').
def _fix(self, fmt='i'):
"""
Read pre- or suffix of line at current position with given
format `fmt` (default 'i').
"""
fmt = self.endian + fmt
fix = self.read(struct.calcsize(fmt))
if fix:
return struct.unpack(fmt, fix)[0]
else:
raise EOFError
|
Return next unformatted "line". If format is given, unpack content,
otherwise return byte string.
def readline(self, fmt=None):
"""
Return next unformatted "line". If format is given, unpack content,
otherwise return byte string.
"""
prefix_size = self._fix()
if fmt is None:
content = self.read(prefix_size)
else:
fmt = self.endian + fmt
fmt = _replace_star(fmt, prefix_size)
content = struct.unpack(fmt, self.read(prefix_size))
try:
suffix_size = self._fix()
except EOFError:
# when endian is invalid and prefix_size > total file size
suffix_size = -1
if prefix_size != suffix_size:
raise IOError(_FIX_ERROR)
return content
|
Skip the next line and returns position and size of line.
Raises IOError if pre- and suffix of line do not match.
def skipline(self):
"""
Skip the next line and returns position and size of line.
Raises IOError if pre- and suffix of line do not match.
"""
position = self.tell()
prefix = self._fix()
self.seek(prefix, 1) # skip content
suffix = self._fix()
if prefix != suffix:
raise IOError(_FIX_ERROR)
return position, prefix
|
Write `line` (list of objects) with given `fmt` to file. The
`line` will be chained if object is iterable (except for
basestrings).
def writeline(self, fmt, *args):
"""
Write `line` (list of objects) with given `fmt` to file. The
`line` will be chained if object is iterable (except for
basestrings).
"""
fmt = self.endian + fmt
size = struct.calcsize(fmt)
fix = struct.pack(self.endian + 'i', size)
line = struct.pack(fmt, *args)
self.write(fix)
self.write(line)
self.write(fix)
|
Write `lines` with given `format`.
def writelines(self, lines, fmt):
"""
Write `lines` with given `format`.
"""
if isinstance(fmt, basestring):
fmt = [fmt] * len(lines)
for f, line in zip(fmt, lines):
self.writeline(f, line, self.endian)
|
Read while the most significant bit is set, then put the 7 least
significant bits of all read bytes together to create a number.
def read_varint(stream):
"""Read while the most significant bit is set, then put the 7 least
significant bits of all read bytes together to create a number.
"""
value = 0
while True:
byte = ord(stream.read(1))
if not byte & 0b10000000:
return value << 7 | byte
value = value << 7 | (byte & 0b01111111)
|
Open a GEOS-Chem BPCH file output as an xarray Dataset.
Parameters
----------
filename : string
Path to the output file to read in.
{tracerinfo,diaginfo}_file : string, optional
Path to the metadata "info" .dat files which are used to decipher
the metadata corresponding to each variable in the output dataset.
If not provided, will look for them in the current directory or
fall back on a generic set.
fields : list, optional
List of a subset of variable names to return. This can substantially
improve read performance. Note that the field here is just the tracer
name - not the category, e.g. 'O3' instead of 'IJ-AVG-$_O3'.
categories : list, optional
List a subset of variable categories to look through. This can
substantially improve read performance.
endian : {'=', '>', '<'}, optional
Endianness of file on disk. By default, "big endian" (">") is assumed.
decode_cf : bool
Enforce CF conventions for variable names, units, and other metadata
default_dtype : numpy.dtype, optional
Default datatype for variables encoded in file on disk (single-precision
float by default).
memmap : bool
Flag indicating that data should be memory-mapped from disk instead of
eagerly loaded into memory
dask : bool
Flag indicating that data reading should be deferred (delayed) to
construct a task-graph for later execution
return_store : bool
Also return the underlying DataStore to the user
Returns
-------
ds : xarray.Dataset
Dataset containing the requested fields (or the entire file), with data
contained in proxy containers for access later.
store : xarray.AbstractDataStore
Underlying DataStore which handles the loading and processing of
bpch files on disk
def open_bpchdataset(filename, fields=[], categories=[],
tracerinfo_file='tracerinfo.dat',
diaginfo_file='diaginfo.dat',
endian=">", decode_cf=True,
memmap=True, dask=True, return_store=False):
""" Open a GEOS-Chem BPCH file output as an xarray Dataset.
Parameters
----------
filename : string
Path to the output file to read in.
{tracerinfo,diaginfo}_file : string, optional
Path to the metadata "info" .dat files which are used to decipher
the metadata corresponding to each variable in the output dataset.
If not provided, will look for them in the current directory or
fall back on a generic set.
fields : list, optional
List of a subset of variable names to return. This can substantially
improve read performance. Note that the field here is just the tracer
name - not the category, e.g. 'O3' instead of 'IJ-AVG-$_O3'.
categories : list, optional
List a subset of variable categories to look through. This can
substantially improve read performance.
endian : {'=', '>', '<'}, optional
Endianness of file on disk. By default, "big endian" (">") is assumed.
decode_cf : bool
Enforce CF conventions for variable names, units, and other metadata
default_dtype : numpy.dtype, optional
Default datatype for variables encoded in file on disk (single-precision
float by default).
memmap : bool
Flag indicating that data should be memory-mapped from disk instead of
eagerly loaded into memory
dask : bool
Flag indicating that data reading should be deferred (delayed) to
construct a task-graph for later execution
return_store : bool
Also return the underlying DataStore to the user
Returns
-------
ds : xarray.Dataset
Dataset containing the requested fields (or the entire file), with data
contained in proxy containers for access later.
store : xarray.AbstractDataStore
Underlying DataStore which handles the loading and processing of
bpch files on disk
"""
store = BPCHDataStore(
filename, fields=fields, categories=categories,
tracerinfo_file=tracerinfo_file,
diaginfo_file=diaginfo_file, endian=endian,
use_mmap=memmap, dask_delayed=dask
)
ds = xr.Dataset.load_store(store)
# Record what the file object underlying the store which we culled this
# Dataset from is so that we can clean it up later
ds._file_obj = store._bpch
# Handle CF corrections
if decode_cf:
decoded_vars = OrderedDict()
rename_dict = {}
for v in ds.variables:
cf_name = cf.get_valid_varname(v)
rename_dict[v] = cf_name
new_var = cf.enforce_cf_variable(ds[v])
decoded_vars[cf_name] = new_var
ds = xr.Dataset(decoded_vars, attrs=ds.attrs.copy())
# ds.rename(rename_dict, inplace=True)
# TODO: There's a bug with xr.decode_cf which eagerly loads data.
# Re-enable this once that bug is fixed
# Note that we do not need to decode the times because we explicitly
# kept track of them as we parsed the data.
# ds = xr.decode_cf(ds, decode_times=False)
# Set attributes for CF conventions
ts = get_timestamp()
ds.attrs.update(dict(
Conventions='CF1.6',
source=filename,
tracerinfo=tracerinfo_file,
diaginfo=diaginfo_file,
filetype=store._bpch.filetype,
filetitle=store._bpch.filetitle,
history=(
"{}: Processed/loaded by xbpch-{} from {}"
.format(ts, ver, filename)
),
))
# To immediately load the data from the BPCHDataProxy paylods, need
# to execute ds.data_vars for some reason...
if return_store:
return ds, store
else:
return ds
|
Open multiple bpch files as a single dataset.
You must have dask installed for this to work, as this greatly
simplifies issues relating to multi-file I/O.
Also, please note that this is not a very performant routine. I/O is still
limited by the fact that we need to manually scan/read through each bpch
file so that we can figure out what its contents are, since that metadata
isn't saved anywhere. So this routine will actually sequentially load
Datasets for each bpch file, then concatenate them along the "time" axis.
You may wish to simply process each file individually, coerce to NetCDF,
and then ingest through xarray as normal.
Parameters
----------
paths : list of strs
Filenames to load; order doesn't matter as they will be
lexicographically sorted before we read in the data
concat_dim : str, default='time'
Dimension to concatenate Datasets over. We default to "time" since this
is how GEOS-Chem splits output files
compat : str (optional)
String indicating how to compare variables of the same name for
potential conflicts when merging:
- 'broadcast_equals': all values must be equal when variables are
broadcast against each other to ensure common dimensions.
- 'equals': all values and dimensions must be the same.
- 'identical': all values, dimensions and attributes must be the
same.
- 'no_conflicts': only values which are not null in both datasets
must be equal. The returned dataset then contains the combination
of all non-null values.
preprocess : callable (optional)
A pre-processing function to apply to each Dataset prior to
concatenation
lock : False, True, or threading.Lock (optional)
Passed to :py:func:`dask.array.from_array`. By default, xarray
employs a per-variable lock when reading data from NetCDF files,
but this model has not yet been extended or implemented for bpch files
and so this is not actually used. However, it is likely necessary
before dask's multi-threaded backend can be used
**kwargs : optional
Additional arguments to pass to :py:func:`xbpch.open_bpchdataset`.
def open_mfbpchdataset(paths, concat_dim='time', compat='no_conflicts',
preprocess=None, lock=None, **kwargs):
""" Open multiple bpch files as a single dataset.
You must have dask installed for this to work, as this greatly
simplifies issues relating to multi-file I/O.
Also, please note that this is not a very performant routine. I/O is still
limited by the fact that we need to manually scan/read through each bpch
file so that we can figure out what its contents are, since that metadata
isn't saved anywhere. So this routine will actually sequentially load
Datasets for each bpch file, then concatenate them along the "time" axis.
You may wish to simply process each file individually, coerce to NetCDF,
and then ingest through xarray as normal.
Parameters
----------
paths : list of strs
Filenames to load; order doesn't matter as they will be
lexicographically sorted before we read in the data
concat_dim : str, default='time'
Dimension to concatenate Datasets over. We default to "time" since this
is how GEOS-Chem splits output files
compat : str (optional)
String indicating how to compare variables of the same name for
potential conflicts when merging:
- 'broadcast_equals': all values must be equal when variables are
broadcast against each other to ensure common dimensions.
- 'equals': all values and dimensions must be the same.
- 'identical': all values, dimensions and attributes must be the
same.
- 'no_conflicts': only values which are not null in both datasets
must be equal. The returned dataset then contains the combination
of all non-null values.
preprocess : callable (optional)
A pre-processing function to apply to each Dataset prior to
concatenation
lock : False, True, or threading.Lock (optional)
Passed to :py:func:`dask.array.from_array`. By default, xarray
employs a per-variable lock when reading data from NetCDF files,
but this model has not yet been extended or implemented for bpch files
and so this is not actually used. However, it is likely necessary
before dask's multi-threaded backend can be used
**kwargs : optional
Additional arguments to pass to :py:func:`xbpch.open_bpchdataset`.
"""
from xarray.backends.api import _MultiFileCloser
# TODO: Include file locks?
# Check for dask
dask = kwargs.pop('dask', False)
if not dask:
raise ValueError("Reading multiple files without dask is not supported")
kwargs['dask'] = True
# Add th
if isinstance(paths, basestring):
paths = sorted(glob(paths))
if not paths:
raise IOError("No paths to files were passed into open_mfbpchdataset")
datasets = [open_bpchdataset(filename, **kwargs)
for filename in paths]
bpch_objs = [ds._file_obj for ds in datasets]
if preprocess is not None:
datasets = [preprocess(ds) for ds in datasets]
# Concatenate over time
combined = xr.auto_combine(datasets, compat=compat, concat_dim=concat_dim)
combined._file_obj = _MultiFileCloser(bpch_objs)
combined.attrs = datasets[0].attrs
ts = get_timestamp()
fns_str = " ".join(paths)
combined.attrs['history'] = (
"{}: Processed/loaded by xbpch-{} from {}"
.format(ts, ver, fns_str)
)
return combined
|
Write your forwards methods here.
def forwards(self, orm):
"Write your forwards methods here."
# Note: Remember to use orm['appname.ModelName'] rather than "from appname.models..."
for entry in orm['multilingual_news.NewsEntry'].objects.all():
self.migrate_placeholder(
orm, entry, 'excerpt', 'multilingual_news_excerpt', 'excerpt')
self.migrate_placeholder(
orm, entry, 'content', 'multilingual_news_content', 'content')
|
Return a bytes string that displays image given by bytes b in the terminal
If filename=None, the filename defaults to "Unnamed file"
width and height are strings, following the format
N: N character cells.
Npx: N pixels.
N%: N percent of the session's width or height.
'auto': The image's inherent size will be used to determine an appropriate
dimension.
preserve_aspect_ratio sets whether the aspect ratio of the image is
preserved. The default (None) is True unless both width and height are
set.
See https://www.iterm2.com/documentation-images.html
def image_bytes(b, filename=None, inline=1, width='auto', height='auto',
preserve_aspect_ratio=None):
"""
Return a bytes string that displays image given by bytes b in the terminal
If filename=None, the filename defaults to "Unnamed file"
width and height are strings, following the format
N: N character cells.
Npx: N pixels.
N%: N percent of the session's width or height.
'auto': The image's inherent size will be used to determine an appropriate
dimension.
preserve_aspect_ratio sets whether the aspect ratio of the image is
preserved. The default (None) is True unless both width and height are
set.
See https://www.iterm2.com/documentation-images.html
"""
if preserve_aspect_ratio is None:
if width != 'auto' and height != 'auto':
preserve_aspect_ratio = False
else:
preserve_aspect_ratio = True
data = {
'name': base64.b64encode((filename or 'Unnamed file').encode('utf-8')).decode('ascii'),
'inline': inline,
'size': len(b),
'base64_img': base64.b64encode(b).decode('ascii'),
'width': width,
'height': height,
'preserve_aspect_ratio': int(preserve_aspect_ratio),
}
# IMAGE_CODE is a string because bytes doesn't support formatting
return IMAGE_CODE.format(**data).encode('ascii')
|
Display the image given by the bytes b in the terminal.
If filename=None the filename defaults to "Unnamed file".
width and height are strings, following the format
N: N character cells.
Npx: N pixels.
N%: N percent of the session's width or height.
'auto': The image's inherent size will be used to determine an appropriate
dimension.
preserve_aspect_ratio sets whether the aspect ratio of the image is
preserved. The default (None) is True unless both width and height are
set.
See https://www.iterm2.com/documentation-images.html
def display_image_bytes(b, filename=None, inline=1, width='auto',
height='auto', preserve_aspect_ratio=None):
"""
Display the image given by the bytes b in the terminal.
If filename=None the filename defaults to "Unnamed file".
width and height are strings, following the format
N: N character cells.
Npx: N pixels.
N%: N percent of the session's width or height.
'auto': The image's inherent size will be used to determine an appropriate
dimension.
preserve_aspect_ratio sets whether the aspect ratio of the image is
preserved. The default (None) is True unless both width and height are
set.
See https://www.iterm2.com/documentation-images.html
"""
sys.stdout.buffer.write(image_bytes(b, filename=filename, inline=inline,
width=width, height=height, preserve_aspect_ratio=preserve_aspect_ratio))
sys.stdout.write('\n')
|
Display an image in the terminal.
A newline is not printed.
width and height are strings, following the format
N: N character cells.
Npx: N pixels.
N%: N percent of the session's width or height.
'auto': The image's inherent size will be used to determine an appropriate
dimension.
preserve_aspect_ratio sets whether the aspect ratio of the image is
preserved. The default (None) is True unless both width and height are
set.
See https://www.iterm2.com/documentation-images.html
def display_image_file(fn, width='auto', height='auto', preserve_aspect_ratio=None):
"""
Display an image in the terminal.
A newline is not printed.
width and height are strings, following the format
N: N character cells.
Npx: N pixels.
N%: N percent of the session's width or height.
'auto': The image's inherent size will be used to determine an appropriate
dimension.
preserve_aspect_ratio sets whether the aspect ratio of the image is
preserved. The default (None) is True unless both width and height are
set.
See https://www.iterm2.com/documentation-images.html
"""
with open(os.path.realpath(os.path.expanduser(fn)), 'rb') as f:
sys.stdout.buffer.write(image_bytes(f.read(), filename=fn,
width=width, height=height,
preserve_aspect_ratio=preserve_aspect_ratio))
|
Get requirements from pip requirement files.
def get_requirements(*args):
"""Get requirements from pip requirement files."""
requirements = set()
contents = get_contents(*args)
for line in contents.splitlines():
# Strip comments.
line = re.sub(r'^#.*|\s#.*', '', line)
# Ignore empty lines
if line and not line.isspace():
requirements.add(re.sub(r'\s+', '', line))
return sorted(requirements)
|
Gets a list of all known bank holidays, optionally filtered by division and/or year
:param division: see division constants; defaults to common holidays
:param year: defaults to all available years
:return: list of dicts with titles, dates, etc
def get_holidays(self, division=None, year=None):
"""
Gets a list of all known bank holidays, optionally filtered by division and/or year
:param division: see division constants; defaults to common holidays
:param year: defaults to all available years
:return: list of dicts with titles, dates, etc
"""
if division:
holidays = self.data[division]
else:
holidays = self.data[self.ENGLAND_AND_WALES]
dates_in_common = six.moves.reduce(
set.intersection,
(set(map(lambda holiday: holiday['date'], division_holidays))
for division, division_holidays in six.iteritems(self.data))
)
holidays = filter(lambda holiday: holiday['date'] in dates_in_common, holidays)
if year:
holidays = filter(lambda holiday: holiday['date'].year == year, holidays)
return list(holidays)
|
Returns the next known bank holiday
:param division: see division constants; defaults to common holidays
:param date: search starting from this date; defaults to today
:return: dict
def get_next_holiday(self, division=None, date=None):
"""
Returns the next known bank holiday
:param division: see division constants; defaults to common holidays
:param date: search starting from this date; defaults to today
:return: dict
"""
date = date or datetime.date.today()
for holiday in self.get_holidays(division=division):
if holiday['date'] > date:
return holiday
|
True if the date is a known bank holiday
:param date: the date to check
:param division: see division constants; defaults to common holidays
:return: bool
def is_holiday(self, date, division=None):
"""
True if the date is a known bank holiday
:param date: the date to check
:param division: see division constants; defaults to common holidays
:return: bool
"""
return date in (holiday['date'] for holiday in self.get_holidays(division=division))
|
Returns the next work day, skipping weekends and bank holidays
:param division: see division constants; defaults to common holidays
:param date: search starting from this date; defaults to today
:return: datetime.date; NB: get_next_holiday returns a dict
def get_next_work_day(self, division=None, date=None):
"""
Returns the next work day, skipping weekends and bank holidays
:param division: see division constants; defaults to common holidays
:param date: search starting from this date; defaults to today
:return: datetime.date; NB: get_next_holiday returns a dict
"""
date = date or datetime.date.today()
one_day = datetime.timedelta(days=1)
holidays = set(holiday['date'] for holiday in self.get_holidays(division=division))
while True:
date += one_day
if date.weekday() not in self.weekend and date not in holidays:
return date
|
True if the date is not a weekend or a known bank holiday
:param date: the date to check
:param division: see division constants; defaults to common holidays
:return: bool
def is_work_day(self, date, division=None):
"""
True if the date is not a weekend or a known bank holiday
:param date: the date to check
:param division: see division constants; defaults to common holidays
:return: bool
"""
return date.weekday() not in self.weekend and date not in (
holiday['date'] for holiday in self.get_holidays(division=division)
)
|
Generator which yields a set of (rx, ry) tuples which describe
all regions for which the world has tile data
def get_all_regions_with_tiles(self):
"""
Generator which yields a set of (rx, ry) tuples which describe
all regions for which the world has tile data
"""
for key in self.get_all_keys():
(layer, rx, ry) = struct.unpack('>BHH', key)
if layer == 1:
yield (rx, ry)
|
Returns the coordinates of the given entity UUID inside this world, or
`None` if the UUID is not found.
def get_entity_uuid_coords(self, uuid):
"""
Returns the coordinates of the given entity UUID inside this world, or
`None` if the UUID is not found.
"""
if uuid in self._entity_to_region_map:
coords = self._entity_to_region_map[uuid]
entities = self.get_entities(*coords)
for entity in entities:
if 'uniqueId' in entity.data and entity.data['uniqueId'] == uuid:
return tuple(entity.data['tilePosition'])
return None
|
A dict whose keys are the UUIDs (or just IDs, in some cases) of
entities, and whose values are the `(rx, ry)` coordinates in which that
entity can be found. This can be used to easily locate particular
entities inside the world.
def _entity_to_region_map(self):
"""
A dict whose keys are the UUIDs (or just IDs, in some cases) of
entities, and whose values are the `(rx, ry)` coordinates in which that
entity can be found. This can be used to easily locate particular
entities inside the world.
"""
entity_to_region = {}
for key in self.get_all_keys():
layer, rx, ry = struct.unpack('>BHH', key)
if layer != 4:
continue
stream = io.BytesIO(self.get(layer, rx, ry))
num_entities = sbon.read_varint(stream)
for _ in range(num_entities):
uuid = sbon.read_string(stream)
if uuid in entity_to_region:
raise ValueError('Duplicate UUID {}'.format(uuid))
entity_to_region[uuid] = (rx, ry)
return entity_to_region
|
Convert a string into a fuzzy regular expression pattern.
:param pattern: The input pattern (a string).
:returns: A compiled regular expression object.
This function works by adding ``.*`` between each of the characters in the
input pattern and compiling the resulting expression into a case
insensitive regular expression.
def create_fuzzy_pattern(pattern):
"""
Convert a string into a fuzzy regular expression pattern.
:param pattern: The input pattern (a string).
:returns: A compiled regular expression object.
This function works by adding ``.*`` between each of the characters in the
input pattern and compiling the resulting expression into a case
insensitive regular expression.
"""
return re.compile(".*".join(map(re.escape, pattern)), re.IGNORECASE)
|
A list of :class:`PasswordEntry` objects that don't match the exclude list.
def filtered_entries(self):
"""A list of :class:`PasswordEntry` objects that don't match the exclude list."""
return [
e for e in self.entries if not any(fnmatch.fnmatch(e.name.lower(), p.lower()) for p in self.exclude_list)
]
|
Perform a "fuzzy" search that matches the given characters in the given order.
:param filters: The pattern(s) to search for.
:returns: The matched password names (a list of strings).
def fuzzy_search(self, *filters):
"""
Perform a "fuzzy" search that matches the given characters in the given order.
:param filters: The pattern(s) to search for.
:returns: The matched password names (a list of strings).
"""
matches = []
logger.verbose(
"Performing fuzzy search on %s (%s) ..", pluralize(len(filters), "pattern"), concatenate(map(repr, filters))
)
patterns = list(map(create_fuzzy_pattern, filters))
for entry in self.filtered_entries:
if all(p.search(entry.name) for p in patterns):
matches.append(entry)
logger.log(
logging.INFO if matches else logging.VERBOSE,
"Matched %s using fuzzy search.",
pluralize(len(matches), "password"),
)
return matches
|
Select a password from the available choices.
:param arguments: Refer to :func:`smart_search()`.
:returns: The name of a password (a string) or :data:`None`
(when no password matched the given `arguments`).
def select_entry(self, *arguments):
"""
Select a password from the available choices.
:param arguments: Refer to :func:`smart_search()`.
:returns: The name of a password (a string) or :data:`None`
(when no password matched the given `arguments`).
"""
matches = self.smart_search(*arguments)
if len(matches) > 1:
logger.info("More than one match, prompting for choice ..")
labels = [entry.name for entry in matches]
return matches[labels.index(prompt_for_choice(labels))]
else:
logger.info("Matched one entry: %s", matches[0].name)
return matches[0]
|
Perform a simple search for case insensitive substring matches.
:param keywords: The string(s) to search for.
:returns: The matched password names (a generator of strings).
Only passwords whose names matches *all* of the given keywords are
returned.
def simple_search(self, *keywords):
"""
Perform a simple search for case insensitive substring matches.
:param keywords: The string(s) to search for.
:returns: The matched password names (a generator of strings).
Only passwords whose names matches *all* of the given keywords are
returned.
"""
matches = []
keywords = [kw.lower() for kw in keywords]
logger.verbose(
"Performing simple search on %s (%s) ..",
pluralize(len(keywords), "keyword"),
concatenate(map(repr, keywords)),
)
for entry in self.filtered_entries:
normalized = entry.name.lower()
if all(kw in normalized for kw in keywords):
matches.append(entry)
logger.log(
logging.INFO if matches else logging.VERBOSE,
"Matched %s using simple search.",
pluralize(len(matches), "password"),
)
return matches
|
Perform a smart search on the given keywords or patterns.
:param arguments: The keywords or patterns to search for.
:returns: The matched password names (a list of strings).
:raises: The following exceptions can be raised:
- :exc:`.NoMatchingPasswordError` when no matching passwords are found.
- :exc:`.EmptyPasswordStoreError` when the password store is empty.
This method first tries :func:`simple_search()` and if that doesn't
produce any matches it will fall back to :func:`fuzzy_search()`. If no
matches are found an exception is raised (see above).
def smart_search(self, *arguments):
"""
Perform a smart search on the given keywords or patterns.
:param arguments: The keywords or patterns to search for.
:returns: The matched password names (a list of strings).
:raises: The following exceptions can be raised:
- :exc:`.NoMatchingPasswordError` when no matching passwords are found.
- :exc:`.EmptyPasswordStoreError` when the password store is empty.
This method first tries :func:`simple_search()` and if that doesn't
produce any matches it will fall back to :func:`fuzzy_search()`. If no
matches are found an exception is raised (see above).
"""
matches = self.simple_search(*arguments)
if not matches:
logger.verbose("Falling back from substring search to fuzzy search ..")
matches = self.fuzzy_search(*arguments)
if not matches:
if len(self.filtered_entries) > 0:
raise NoMatchingPasswordError(
format("No passwords matched the given arguments! (%s)", concatenate(map(repr, arguments)))
)
else:
msg = "You don't have any passwords yet! (no *.gpg files found)"
raise EmptyPasswordStoreError(msg)
return matches
|
A list of :class:`PasswordEntry` objects.
def entries(self):
"""A list of :class:`PasswordEntry` objects."""
passwords = []
for store in self.stores:
passwords.extend(store.entries)
return natsort(passwords, key=lambda e: e.name)
|
An execution context created using :mod:`executor.contexts`.
The value of :attr:`context` defaults to a
:class:`~executor.contexts.LocalContext` object with the following
characteristics:
- The working directory of the execution context is set to the
value of :attr:`directory`.
- The environment variable given by :data:`DIRECTORY_VARIABLE` is set
to the value of :attr:`directory`.
:raises: :exc:`.MissingPasswordStoreError` when :attr:`directory`
doesn't exist.
def context(self):
"""
An execution context created using :mod:`executor.contexts`.
The value of :attr:`context` defaults to a
:class:`~executor.contexts.LocalContext` object with the following
characteristics:
- The working directory of the execution context is set to the
value of :attr:`directory`.
- The environment variable given by :data:`DIRECTORY_VARIABLE` is set
to the value of :attr:`directory`.
:raises: :exc:`.MissingPasswordStoreError` when :attr:`directory`
doesn't exist.
"""
# Make sure the directory exists.
self.ensure_directory_exists()
# Prepare the environment variables.
environment = {DIRECTORY_VARIABLE: self.directory}
try:
# Try to enable the GPG agent in headless sessions.
environment.update(get_gpg_variables())
except Exception:
# If we failed then let's at least make sure that the
# $GPG_TTY environment variable is set correctly.
environment.update(GPG_TTY=execute("tty", capture=True, check=False, tty=True, silent=True))
return LocalContext(directory=self.directory, environment=environment)
|
Normalize the value of :attr:`directory` when it's set.
def directory(self, value):
"""Normalize the value of :attr:`directory` when it's set."""
# Normalize the value of `directory'.
set_property(self, "directory", parse_path(value))
# Clear the computed values of `context' and `entries'.
clear_property(self, "context")
clear_property(self, "entries")
|
A list of :class:`PasswordEntry` objects.
def entries(self):
"""A list of :class:`PasswordEntry` objects."""
timer = Timer()
passwords = []
logger.info("Scanning %s ..", format_path(self.directory))
listing = self.context.capture("find", "-type", "f", "-name", "*.gpg", "-print0")
for filename in split(listing, "\0"):
basename, extension = os.path.splitext(filename)
if extension == ".gpg":
# We use os.path.normpath() to remove the leading `./' prefixes
# that `find' adds because it searches the working directory.
passwords.append(PasswordEntry(name=os.path.normpath(basename), store=self))
logger.verbose("Found %s in %s.", pluralize(len(passwords), "password"), timer)
return natsort(passwords, key=lambda e: e.name)
|
Make sure :attr:`directory` exists.
:raises: :exc:`.MissingPasswordStoreError` when the password storage
directory doesn't exist.
def ensure_directory_exists(self):
"""
Make sure :attr:`directory` exists.
:raises: :exc:`.MissingPasswordStoreError` when the password storage
directory doesn't exist.
"""
if not os.path.isdir(self.directory):
msg = "The password storage directory doesn't exist! (%s)"
raise MissingPasswordStoreError(msg % self.directory)
|
Format :attr:`text` for viewing on a terminal.
:param include_password: :data:`True` to include the password in the
formatted text, :data:`False` to exclude the
password from the formatted text.
:param use_colors: :data:`True` to use ANSI escape sequences,
:data:`False` otherwise. When this is :data:`None`
:func:`~humanfriendly.terminal.terminal_supports_colors()`
will be used to detect whether ANSI escape sequences
are supported.
:param padding: :data:`True` to add empty lines before and after the
entry and indent the entry's text with two spaces,
:data:`False` to skip the padding.
:param filters: An iterable of regular expression patterns (defaults to
an empty tuple). If a line in the entry's text matches
one of these patterns it won't be shown on the
terminal.
:returns: The formatted entry (a string).
def format_text(self, include_password=True, use_colors=None, padding=True, filters=()):
"""
Format :attr:`text` for viewing on a terminal.
:param include_password: :data:`True` to include the password in the
formatted text, :data:`False` to exclude the
password from the formatted text.
:param use_colors: :data:`True` to use ANSI escape sequences,
:data:`False` otherwise. When this is :data:`None`
:func:`~humanfriendly.terminal.terminal_supports_colors()`
will be used to detect whether ANSI escape sequences
are supported.
:param padding: :data:`True` to add empty lines before and after the
entry and indent the entry's text with two spaces,
:data:`False` to skip the padding.
:param filters: An iterable of regular expression patterns (defaults to
an empty tuple). If a line in the entry's text matches
one of these patterns it won't be shown on the
terminal.
:returns: The formatted entry (a string).
"""
# Determine whether we can use ANSI escape sequences.
if use_colors is None:
use_colors = terminal_supports_colors()
# Extract the password (first line) from the entry.
lines = self.text.splitlines()
password = lines.pop(0).strip()
# Compile the given patterns to case insensitive regular expressions
# and use them to ignore lines that match any of the given filters.
patterns = [coerce_pattern(f, re.IGNORECASE) for f in filters]
lines = [l for l in lines if not any(p.search(l) for p in patterns)]
text = trim_empty_lines("\n".join(lines))
# Include the password in the formatted text?
if include_password:
text = "Password: %s\n%s" % (password, text)
# Add the name to the entry (only when there's something to show).
if text and not text.isspace():
title = " / ".join(split(self.name, "/"))
if use_colors:
title = ansi_wrap(title, bold=True)
text = "%s\n\n%s" % (title, text)
# Highlight the entry's text using ANSI escape sequences.
lines = []
for line in text.splitlines():
# Check for a "Key: Value" line.
match = KEY_VALUE_PATTERN.match(line)
if match:
key = "%s:" % match.group(1).strip()
value = match.group(2).strip()
if use_colors:
# Highlight the key.
key = ansi_wrap(key, color=HIGHLIGHT_COLOR)
# Underline hyperlinks in the value.
tokens = value.split()
for i in range(len(tokens)):
if "://" in tokens[i]:
tokens[i] = ansi_wrap(tokens[i], underline=True)
# Replace the line with a highlighted version.
line = key + " " + " ".join(tokens)
if padding:
line = " " + line
lines.append(line)
text = "\n".join(lines)
text = trim_empty_lines(text)
if text and padding:
text = "\n%s\n" % text
return text
|
Read an output's diaginfo.dat file and parse into a DataFrame for
use in selecting and parsing categories.
Parameters
----------
diaginfo_file : str
Path to diaginfo.dat
Returns
-------
DataFrame containing the category information.
def get_diaginfo(diaginfo_file):
"""
Read an output's diaginfo.dat file and parse into a DataFrame for
use in selecting and parsing categories.
Parameters
----------
diaginfo_file : str
Path to diaginfo.dat
Returns
-------
DataFrame containing the category information.
"""
widths = [rec.width for rec in diag_recs]
col_names = [rec.name for rec in diag_recs]
dtypes = [rec.type for rec in diag_recs]
usecols = [name for name in col_names if not name.startswith('-')]
diag_df = pd.read_fwf(diaginfo_file, widths=widths, names=col_names,
dtypes=dtypes, comment="#", header=None,
usecols=usecols)
diag_desc = {diag.name: diag.desc for diag in diag_recs
if not diag.name.startswith('-')}
return diag_df, diag_desc
|
Read an output's tracerinfo.dat file and parse into a DataFrame for
use in selecting and parsing categories.
Parameters
----------
tracerinfo_file : str
Path to tracerinfo.dat
Returns
-------
DataFrame containing the tracer information.
def get_tracerinfo(tracerinfo_file):
"""
Read an output's tracerinfo.dat file and parse into a DataFrame for
use in selecting and parsing categories.
Parameters
----------
tracerinfo_file : str
Path to tracerinfo.dat
Returns
-------
DataFrame containing the tracer information.
"""
widths = [rec.width for rec in tracer_recs]
col_names = [rec.name for rec in tracer_recs]
dtypes = [rec.type for rec in tracer_recs]
usecols = [name for name in col_names if not name.startswith('-')]
tracer_df = pd.read_fwf(tracerinfo_file, widths=widths, names=col_names,
dtypes=dtypes, comment="#", header=None,
usecols=usecols)
# Check an edge case related to a bug in GEOS-Chem v12.0.3 which
# erroneously dropped short/long tracer names in certain tracerinfo.dat outputs.
# What we do here is figure out which rows were erroneously processed (they'll
# have NaNs in them) and raise a warning if there are any
na_free = tracer_df.dropna(subset=['tracer', 'scale'])
only_na = tracer_df[~tracer_df.index.isin(na_free.index)]
if len(only_na) > 0:
warn("At least one row in {} wasn't decoded correctly; we strongly"
" recommend you manually check that file to see that all"
" tracers are properly recorded."
.format(tracerinfo_file))
tracer_desc = {tracer.name: tracer.desc for tracer in tracer_recs
if not tracer.name.startswith('-')}
# Process some of the information about which variables are hydrocarbons
# and chemical tracers versus other diagnostics.
def _assign_hydrocarbon(row):
if row['C'] != 1:
row['hydrocarbon'] = True
row['molwt'] = C_MOLECULAR_WEIGHT
else:
row['hydrocarbon'] = False
return row
tracer_df = (
tracer_df
.apply(_assign_hydrocarbon, axis=1)
.assign(chemical=lambda x: x['molwt'].astype(bool))
)
return tracer_df, tracer_desc
|
Read a chunk of data from a bpch output file.
Parameters
----------
filename : str
Path to file on disk containing the data
file_position : int
Position (bytes) where desired data chunk begins
shape : tuple of ints
Resultant (n-dimensional) shape of requested data; the chunk
will be read sequentially from disk and then re-shaped
dtype : dtype
Dtype of data; for best results, pass a dtype which includes
an endian indicator, e.g. `dtype = np.dtype('>f4')`
endian : str
Endianness of data; should be consistent with `dtype`
use_mmap : bool
Memory map the chunk of data to the file on disk, else read
immediately
Returns
-------
Array with shape `shape` and dtype `dtype` containing the requested
chunk of data from `filename`.
def read_from_bpch(filename, file_position, shape, dtype, endian,
use_mmap=False):
""" Read a chunk of data from a bpch output file.
Parameters
----------
filename : str
Path to file on disk containing the data
file_position : int
Position (bytes) where desired data chunk begins
shape : tuple of ints
Resultant (n-dimensional) shape of requested data; the chunk
will be read sequentially from disk and then re-shaped
dtype : dtype
Dtype of data; for best results, pass a dtype which includes
an endian indicator, e.g. `dtype = np.dtype('>f4')`
endian : str
Endianness of data; should be consistent with `dtype`
use_mmap : bool
Memory map the chunk of data to the file on disk, else read
immediately
Returns
-------
Array with shape `shape` and dtype `dtype` containing the requested
chunk of data from `filename`.
"""
offset = file_position + 4
if use_mmap:
d = np.memmap(filename, dtype=dtype, mode='r', shape=shape,
offset=offset, order='F')
else:
with FortranFile(filename, 'rb', endian) as ff:
ff.seek(file_position)
d = np.array(ff.readline('*f'))
d = d.reshape(shape, order='F')
# As a sanity check, *be sure* that the resulting data block has the
# correct shape, and fail early if it doesn't.
if (d.shape != shape):
raise IOError("Data chunk read from {} does not have the right shape,"
" (expected {} but got {})"
.format(filename, shape, d.shape))
return d
|
Helper function to load the data referenced by this bundle.
def _read(self):
""" Helper function to load the data referenced by this bundle. """
if self._dask:
d = da.from_delayed(
delayed(read_from_bpch, )(
self.filename, self.file_position, self.shape,
self.dtype, self.endian, use_mmap=self._mmap
),
self.shape, self.dtype
)
else:
d = read_from_bpch(
self.filename, self.file_position, self.shape,
self.dtype, self.endian, use_mmap=self._mmap
)
return d
|
Close this bpch file.
def close(self):
""" Close this bpch file.
"""
if not self.fp.closed:
for v in list(self.var_data):
del self.var_data[v]
self.fp.close()
|
Read the main metadata packaged within a bpch file, indicating
the output filetype and its title.
def _read_metadata(self):
""" Read the main metadata packaged within a bpch file, indicating
the output filetype and its title.
"""
filetype = self.fp.readline().strip()
filetitle = self.fp.readline().strip()
# Decode to UTF string, if possible
try:
filetype = str(filetype, 'utf-8')
filetitle = str(filetitle, 'utf-8')
except:
# TODO: Handle this edge-case of converting file metadata more elegantly.
pass
self.__setattr__('filetype', filetype)
self.__setattr__('filetitle', filetitle)
|
Process the header information (data model / grid spec)
def _read_header(self):
""" Process the header information (data model / grid spec) """
self._header_pos = self.fp.tell()
line = self.fp.readline('20sffii')
modelname, res0, res1, halfpolar, center180 = line
self._attributes.update({
"modelname": str(modelname, 'utf-8').strip(),
"halfpolar": halfpolar,
"center180": center180,
"res": (res0, res1)
})
self.__setattr__('modelname', modelname)
self.__setattr__('res', (res0, res1))
self.__setattr__('halfpolar', halfpolar)
self.__setattr__('center180', center180)
# Re-wind the file
self.fp.seek(self._header_pos)
|
Iterate over the block of this bpch file and return handlers
in the form of `BPCHDataBundle`s for access to the data contained
therein.
def _read_var_data(self):
""" Iterate over the block of this bpch file and return handlers
in the form of `BPCHDataBundle`s for access to the data contained
therein.
"""
var_bundles = OrderedDict()
var_attrs = OrderedDict()
n_vars = 0
while self.fp.tell() < self.fsize:
var_attr = OrderedDict()
# read first and second header lines
line = self.fp.readline('20sffii')
modelname, res0, res1, halfpolar, center180 = line
line = self.fp.readline('40si40sdd40s7i')
category_name, number, unit, tau0, tau1, reserved = line[:6]
dim0, dim1, dim2, dim3, dim4, dim5, skip = line[6:]
var_attr['number'] = number
# Decode byte-strings to utf-8
category_name = str(category_name, 'utf-8')
var_attr['category'] = category_name.strip()
unit = str(unit, 'utf-8')
# get additional metadata from tracerinfo / diaginfo
try:
cat_df = self.diaginfo_df[
self.diaginfo_df.name == category_name.strip()
]
# TODO: Safer logic for handling case where more than one
# tracer metadata match was made
# if len(cat_df > 1):
# raise ValueError(
# "More than one category matching {} found in "
# "diaginfo.dat".format(
# category_name.strip()
# )
# )
# Safe now to select the only row in the DataFrame
cat = cat_df.T.squeeze()
tracer_num = int(cat.offset) + int(number)
diag_df = self.tracerinfo_df[
self.tracerinfo_df.tracer == tracer_num
]
# TODO: Safer logic for handling case where more than one
# tracer metadata match was made
# if len(diag_df > 1):
# raise ValueError(
# "More than one tracer matching {:d} found in "
# "tracerinfo.dat".format(tracer_num)
# )
# Safe now to select only row in the DataFrame
diag = diag_df.T.squeeze()
diag_attr = diag.to_dict()
if not unit.strip(): # unit may be empty in bpch
unit = diag_attr['unit'] # but not in tracerinfo
var_attr.update(diag_attr)
except:
diag = {'name': '', 'scale': 1}
var_attr.update(diag)
var_attr['unit'] = unit
vname = diag['name']
fullname = category_name.strip() + "_" + vname
# parse metadata, get data or set a data proxy
if dim2 == 1:
data_shape = (dim0, dim1) # 2D field
else:
data_shape = (dim0, dim1, dim2)
var_attr['original_shape'] = data_shape
# Add proxy time dimension to shape
data_shape = tuple([1, ] + list(data_shape))
origin = (dim3, dim4, dim5)
var_attr['origin'] = origin
timelo, timehi = cf.tau2time(tau0), cf.tau2time(tau1)
pos = self.fp.tell()
# Note that we don't pass a dtype, and assume everything is
# single-fp floats with the correct endian, as hard-coded
var_bundle = BPCHDataBundle(
data_shape, self.endian, self.filename, pos, [timelo, timehi],
metadata=var_attr,
use_mmap=self.use_mmap, dask_delayed=self.dask_delayed
)
self.fp.skipline()
# Save the data as a "bundle" for concatenating in the final step
if fullname in var_bundles:
var_bundles[fullname].append(var_bundle)
else:
var_bundles[fullname] = [var_bundle, ]
var_attrs[fullname] = var_attr
n_vars += 1
self.var_data = var_bundles
self.var_attrs = var_attrs
|
Broadcast 1-d array `arr` to `ndim` dimensions on the first axis
(`axis`=0) or on the last axis (`axis`=1).
Useful for 'outer' calculations involving 1-d arrays that are related to
different axes on a multidimensional grid.
def broadcast_1d_array(arr, ndim, axis=1):
"""
Broadcast 1-d array `arr` to `ndim` dimensions on the first axis
(`axis`=0) or on the last axis (`axis`=1).
Useful for 'outer' calculations involving 1-d arrays that are related to
different axes on a multidimensional grid.
"""
ext_arr = arr
for i in range(ndim - 1):
ext_arr = np.expand_dims(ext_arr, axis=axis)
return ext_arr
|
Return the current timestamp in machine local time.
Parameters:
-----------
time, date : Boolean
Flag to include the time or date components, respectively,
in the output.
fmt : str, optional
If passed, will override the time/date choice and use as
the format string passed to `strftime`.
def get_timestamp(time=True, date=True, fmt=None):
""" Return the current timestamp in machine local time.
Parameters:
-----------
time, date : Boolean
Flag to include the time or date components, respectively,
in the output.
fmt : str, optional
If passed, will override the time/date choice and use as
the format string passed to `strftime`.
"""
time_format = "%H:%M:%S"
date_format = "%m-%d-%Y"
if fmt is None:
if time and date:
fmt = time_format + " " + date_format
elif time:
fmt = time_format
elif date:
fmt = date_format
else:
raise ValueError("One of `date` or `time` must be True!")
return datetime.now().strftime(fmt)
|
This is a temporary hot-fix to handle the way metadata is encoded
when we read data directly from bpch files. It removes the 'scale_factor'
and 'units' attributes we encode with the data we ingest, converts the
'hydrocarbon' and 'chemical' attribute to a binary integer instead of a
boolean, and removes the 'units' attribute from the "time" dimension since
that too is implicitly encoded.
In future versions of this library, when upstream issues in decoding
data wrapped in dask arrays is fixed, this won't be necessary and will be
removed.
def fix_attr_encoding(ds):
""" This is a temporary hot-fix to handle the way metadata is encoded
when we read data directly from bpch files. It removes the 'scale_factor'
and 'units' attributes we encode with the data we ingest, converts the
'hydrocarbon' and 'chemical' attribute to a binary integer instead of a
boolean, and removes the 'units' attribute from the "time" dimension since
that too is implicitly encoded.
In future versions of this library, when upstream issues in decoding
data wrapped in dask arrays is fixed, this won't be necessary and will be
removed.
"""
def _maybe_del_attr(da, attr):
""" Possibly delete an attribute on a DataArray if it's present """
if attr in da.attrs:
del da.attrs[attr]
return da
def _maybe_decode_attr(da, attr):
# TODO: Fix this so that bools get written as attributes just fine
""" Possibly coerce an attribute on a DataArray to an easier type
to write to disk. """
# bool -> int
if (attr in da.attrs) and (type(da.attrs[attr] == bool)):
da.attrs[attr] = int(da.attrs[attr])
return da
for v in ds.data_vars:
da = ds[v]
da = _maybe_del_attr(da, 'scale_factor')
da = _maybe_del_attr(da, 'units')
da = _maybe_decode_attr(da, 'hydrocarbon')
da = _maybe_decode_attr(da, 'chemical')
# Also delete attributes on time.
if hasattr(ds, 'time'):
times = ds.time
times = _maybe_del_attr(times, 'units')
return ds
|
Shell sequence to be run after the command output.
The ``command_status`` should be in the range 0-255.
def after_output(command_status):
"""
Shell sequence to be run after the command output.
The ``command_status`` should be in the range 0-255.
"""
if command_status not in range(256):
raise ValueError("command_status must be an integer in the range 0-255")
sys.stdout.write(AFTER_OUTPUT.format(command_status=command_status))
# Flushing is important as the command timing feature maybe based on
# AFTER_OUTPUT in the future.
sys.stdout.flush()
|
Write your forwards methods here.
def forwards(self, orm):
"Write your forwards methods here."
# Note: Remember to use orm['appname.ModelName'] rather than "from appname.models..."
for entry_title in orm.NewsEntryTitle.objects.all():
entry = NewsEntry.objects.get(pk=entry_title.entry.pk)
entry.translate(entry_title.language)
entry.title = entry_title.title
entry.slug = entry_title.slug
entry.is_published = entry_title.is_published
entry.save()
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.