text
stringlengths
81
112k
Create a gym env optionally with a time limit and maxskip wrapper. NOTE: The returned env may already be wrapped with TimeLimit! Args: name: `str` - base name of the gym env to make. rl_env_max_episode_steps: `int` or None - Using any value < 0 returns the env as-in, otherwise we impose the requested timelimit. Setting this to None returns a wrapped env that doesn't have a step limit. maxskip_env: whether to also use MaxAndSkip wrapper before time limit. rendered_env: whether to force render for observations. Use this for environments that are not natively rendering the scene for observations. rendered_env_resize_to: a list of [height, width] to change the original resolution of the native environment render. sticky_actions: whether to use sticky_actions before MaxAndSkip wrapper. Returns: An instance of `gym.Env` or `gym.Wrapper`. def make_gym_env(name, rl_env_max_episode_steps=-1, maxskip_env=False, rendered_env=False, rendered_env_resize_to=None, sticky_actions=False): """Create a gym env optionally with a time limit and maxskip wrapper. NOTE: The returned env may already be wrapped with TimeLimit! Args: name: `str` - base name of the gym env to make. rl_env_max_episode_steps: `int` or None - Using any value < 0 returns the env as-in, otherwise we impose the requested timelimit. Setting this to None returns a wrapped env that doesn't have a step limit. maxskip_env: whether to also use MaxAndSkip wrapper before time limit. rendered_env: whether to force render for observations. Use this for environments that are not natively rendering the scene for observations. rendered_env_resize_to: a list of [height, width] to change the original resolution of the native environment render. sticky_actions: whether to use sticky_actions before MaxAndSkip wrapper. Returns: An instance of `gym.Env` or `gym.Wrapper`. """ env = gym.make(name) return gym_env_wrapper(env, rl_env_max_episode_steps, maxskip_env, rendered_env, rendered_env_resize_to, sticky_actions)
Registers the class in Gym and returns the registered name and the env. def register_gym_env(class_entry_point, version="v0", kwargs=None): """Registers the class in Gym and returns the registered name and the env.""" split_on_colon = class_entry_point.split(":") assert len(split_on_colon) == 2 class_name = split_on_colon[1] # We have to add the version to conform to gym's API. env_name = "T2TEnv-{}-{}".format(class_name, version) gym.envs.register(id=env_name, entry_point=class_entry_point, kwargs=kwargs) tf.logging.info("Entry Point [%s] registered with id [%s]", class_entry_point, env_name) return env_name, gym.make(env_name)
Repeat action, sum reward, and max over last observations. def step(self, action): """Repeat action, sum reward, and max over last observations.""" total_reward = 0.0 done = None for i in range(self._skip): obs, reward, done, info = self.env.step(action) if i == self._skip - 2: self._obs_buffer[0] = obs if i == self._skip - 1: self._obs_buffer[1] = obs total_reward += reward if done: break # Note that the observation on the done=True frame doesn't matter. max_frame = self._obs_buffer.max(axis=0) return max_frame, total_reward, done, info
Log out and possibly reraise errors during import. def _handle_errors(errors): """Log out and possibly reraise errors during import.""" if not errors: return log_all = True # pylint: disable=unused-variable err_msg = "T2T: skipped importing {num_missing} data_generators modules." print(err_msg.format(num_missing=len(errors))) for module, err in errors: err_str = str(err) if not _is_import_err_msg(err_str, module): print("From module %s" % module) raise err if log_all: print("Did not import module: %s; Cause: %s" % (module, err_str))
Create HParams with data_dir and problem hparams, if kwargs provided. def create_hparams(hparams_set, hparams_overrides_str="", data_dir=None, problem_name=None, hparams_path=None): """Create HParams with data_dir and problem hparams, if kwargs provided.""" hparams = registry.hparams(hparams_set) if hparams_path and tf.gfile.Exists(hparams_path): hparams = create_hparams_from_json(hparams_path, hparams) if data_dir: hparams.add_hparam("data_dir", data_dir) if hparams_overrides_str: tf.logging.info("Overriding hparams in %s with %s", hparams_set, hparams_overrides_str) hparams = hparams.parse(hparams_overrides_str) if problem_name: add_problem_hparams(hparams, problem_name) return hparams
Loading hparams from json; can also start from hparams if specified. def create_hparams_from_json(json_path, hparams=None): """Loading hparams from json; can also start from hparams if specified.""" tf.logging.info("Loading hparams from existing json %s" % json_path) with tf.gfile.Open(json_path, "r") as f: hparams_values = json.load(f) # Prevent certain keys from overwriting the passed-in hparams. # TODO(trandustin): Remove this hack after registries are available to avoid # saving them as functions. hparams_values.pop("bottom", None) hparams_values.pop("loss", None) hparams_values.pop("name", None) hparams_values.pop("top", None) hparams_values.pop("weights_fn", None) new_hparams = hparam.HParams(**hparams_values) # Some keys are in new_hparams but not hparams, so we need to be more # careful than simply using parse_json() from HParams if hparams: # hparams specified, so update values from json for key in sorted(new_hparams.values().keys()): if hasattr(hparams, key): # Overlapped keys value = getattr(hparams, key) new_value = getattr(new_hparams, key) if value != new_value: # Different values tf.logging.info("Overwrite key %s: %s -> %s" % ( key, value, new_value)) setattr(hparams, key, new_value) else: hparams = new_hparams return hparams
Add problem hparams for the problems. def add_problem_hparams(hparams, problem_name_or_instance): """Add problem hparams for the problems.""" if isinstance(problem_name_or_instance, problem_lib.Problem): problem = problem_name_or_instance else: problem = registry.problem(problem_name_or_instance) p_hparams = problem.get_hparams(hparams) hparams.problem = problem hparams.problem_hparams = p_hparams
Loads exampls from the tsv file. Args: tmp_dir: temp directory. prop_train: proportion of the train data prop_val: proportion of the validation data Returns: All examples in the dataset pluse train, test, and development splits. def load_examples(tmp_dir, prop_train=0.09, prop_val=0.01): """Loads exampls from the tsv file. Args: tmp_dir: temp directory. prop_train: proportion of the train data prop_val: proportion of the validation data Returns: All examples in the dataset pluse train, test, and development splits. """ infile = generator_utils.maybe_download(tmp_dir, _TAR, _URL) tf.logging.info('Loading examples') all_examples = [] for i, d in enumerate(csv.DictReader(gzip.open(infile), delimiter='\t')): if i % 100000 == 0: tf.logging.info('%d examples have been loaded....' % i) ex = {x: int(y) if y.isdigit() else y for x, y in d.items()} all_examples.append(ex) random.seed(1) random.shuffle(all_examples) n_train = int(len(all_examples) * prop_train) n_val = n_train + int(len(all_examples) * prop_val) train = all_examples[:n_train] val = all_examples[n_train:n_val] test = [] for e in all_examples[n_val:]: if e['n_intervening'] == e['n_diff_intervening']: test.append(e) return all_examples, train, val, test
Download and extract CIFAR to directory unless it is there. def _get_cifar(directory, url): """Download and extract CIFAR to directory unless it is there.""" filename = os.path.basename(url) path = generator_utils.maybe_download(directory, filename, url) tarfile.open(path, "r:gz").extractall(directory)
Image generator for CIFAR-10 and 100. Args: cifar_version: string; one of "cifar10" or "cifar100" tmp_dir: path to temporary storage directory. training: a Boolean; if true, we use the train set, otherwise the test set. how_many: how many images and labels to generate. start_from: from which image to start. Returns: An instance of image_generator that produces CIFAR-10 images and labels. def cifar_generator(cifar_version, tmp_dir, training, how_many, start_from=0): """Image generator for CIFAR-10 and 100. Args: cifar_version: string; one of "cifar10" or "cifar100" tmp_dir: path to temporary storage directory. training: a Boolean; if true, we use the train set, otherwise the test set. how_many: how many images and labels to generate. start_from: from which image to start. Returns: An instance of image_generator that produces CIFAR-10 images and labels. """ if cifar_version == "cifar10": url = _CIFAR10_URL train_files = _CIFAR10_TRAIN_FILES test_files = _CIFAR10_TEST_FILES prefix = _CIFAR10_PREFIX image_size = _CIFAR10_IMAGE_SIZE label_key = "labels" elif cifar_version == "cifar100" or cifar_version == "cifar20": url = _CIFAR100_URL train_files = _CIFAR100_TRAIN_FILES test_files = _CIFAR100_TEST_FILES prefix = _CIFAR100_PREFIX image_size = _CIFAR100_IMAGE_SIZE if cifar_version == "cifar100": label_key = "fine_labels" else: label_key = "coarse_labels" _get_cifar(tmp_dir, url) data_files = train_files if training else test_files all_images, all_labels = [], [] for filename in data_files: path = os.path.join(tmp_dir, prefix, filename) with tf.gfile.Open(path, "rb") as f: if six.PY2: data = cPickle.load(f) else: data = cPickle.load(f, encoding="latin1") images = data["data"] num_images = images.shape[0] images = images.reshape((num_images, 3, image_size, image_size)) all_images.extend([ np.squeeze(images[j]).transpose((1, 2, 0)) for j in range(num_images) ]) labels = data[label_key] all_labels.extend([labels[j] for j in range(num_images)]) return image_utils.image_generator( all_images[start_from:start_from + how_many], all_labels[start_from:start_from + how_many])
HParams for PPO base. def rlmb_ppo_base(): """HParams for PPO base.""" hparams = _rlmb_base() ppo_params = dict( base_algo="ppo", base_algo_params="ppo_original_params", # Number of real environments to train on simultaneously. real_batch_size=1, # Number of simulated environments to train on simultaneously. simulated_batch_size=16, eval_batch_size=32, # Unused; number of PPO epochs is calculated from the real frame limit. real_ppo_epochs_num=0, # Number of frames that can be taken from the simulated environment before # it diverges, used for training the agent. ppo_epochs_num=1000, # This should be enough to see something # Should be equal to simulated_rollout_length. # TODO(koz4k): Uncouple this by outputing done from SimulatedBatchEnv. ppo_epoch_length=hparams.simulated_rollout_length, # Do not eval since simulated batch env does not produce dones ppo_eval_every_epochs=0, ppo_learning_rate_constant=1e-4, # Will be changed, just so it exists. # This needs to be divisible by real_ppo_effective_num_agents. real_ppo_epoch_length=16 * 200, real_ppo_learning_rate_constant=1e-4, real_ppo_effective_num_agents=16, real_ppo_eval_every_epochs=0, simulation_flip_first_random_for_beginning=True, ) update_hparams(hparams, ppo_params) return hparams
rlmb_dqn_base params. def rlmb_dqn_base(): """rlmb_dqn_base params.""" hparams = _rlmb_base() simulated_rollout_length = 10 dqn_params = dict( base_algo="dqn", base_algo_params="dqn_original_params", real_batch_size=1, simulated_batch_size=16, dqn_agent_generates_trainable_dones=False, eval_batch_size=1, # Must be equal to dqn_time_limit for now simulated_rollout_length=simulated_rollout_length, dqn_time_limit=simulated_rollout_length, simulation_flip_first_random_for_beginning=False, dqn_eval_episodes_num=3, # TODO(kc): only for model-free compatibility, remove this epochs_num=-1, ) update_hparams(hparams, dqn_params) return hparams
Base setting but quicker with only 2 epochs. def rlmb_ppo_quick(): """Base setting but quicker with only 2 epochs.""" hparams = rlmb_ppo_base() hparams.epochs = 2 hparams.model_train_steps = 25000 hparams.ppo_epochs_num = 700 hparams.ppo_epoch_length = 50 return hparams
Base setting with a stochastic next-frame model. def rlmb_base_stochastic(): """Base setting with a stochastic next-frame model.""" hparams = rlmb_base() hparams.initial_epoch_train_steps_multiplier = 5 hparams.generative_model = "next_frame_basic_stochastic" hparams.generative_model_params = "next_frame_basic_stochastic" return hparams
Base setting with stochastic discrete model. def rlmb_base_stochastic_discrete(): """Base setting with stochastic discrete model.""" hparams = rlmb_base() hparams.learning_rate_bump = 1.0 hparams.grayscale = False hparams.generative_model = "next_frame_basic_stochastic_discrete" hparams.generative_model_params = "next_frame_basic_stochastic_discrete" # The parameters below are the same as base, but repeated for easier reading. hparams.ppo_epoch_length = 50 hparams.simulated_rollout_length = 50 hparams.simulated_batch_size = 16 return hparams
Long setting with stochastic discrete model & deterministic sim starts. def rlmb_long_stochastic_discrete_simulation_deterministic_starts(): """Long setting with stochastic discrete model & deterministic sim starts.""" hparams = rlmb_base_stochastic_discrete() hparams.generative_model_params = "next_frame_basic_stochastic_discrete_long" hparams.ppo_epochs_num = 1000 hparams.simulation_random_starts = False return hparams
Long setting with stochastic discrete model, changed ppo steps. def rlmb_long_stochastic_discrete_100steps(): """Long setting with stochastic discrete model, changed ppo steps.""" hparams = rlmb_long_stochastic_discrete() hparams.ppo_epoch_length = 100 hparams.simulated_rollout_length = 100 hparams.simulated_batch_size = 8 return hparams
Long setting with stochastic discrete model, changed ppo steps. def rlmb_long_stochastic_discrete_25steps(): """Long setting with stochastic discrete model, changed ppo steps.""" hparams = rlmb_long_stochastic_discrete() hparams.ppo_epoch_length = 25 hparams.simulated_rollout_length = 25 hparams.simulated_batch_size = 32 return hparams
Base setting with stochastic discrete model. def rlmb_base_stochastic_discrete_noresize(): """Base setting with stochastic discrete model.""" hparams = rlmb_base() hparams.generative_model = "next_frame_basic_stochastic_discrete" hparams.generative_model_params = "next_frame_basic_stochastic_discrete" hparams.resize_height_factor = 1 hparams.resize_width_factor = 1 return hparams
Base setting with sv2p as world model. def rlmb_base_sv2p(): """Base setting with sv2p as world model.""" hparams = rlmb_base() hparams.learning_rate_bump = 1.0 hparams.generative_model = "next_frame_sv2p" hparams.generative_model_params = "next_frame_sv2p_atari" return hparams
Parameters to override for tiny setting excluding agent-related hparams. def _rlmb_tiny_overrides(): """Parameters to override for tiny setting excluding agent-related hparams.""" return dict( epochs=1, num_real_env_frames=128, model_train_steps=2, max_num_noops=1, eval_max_num_noops=1, generative_model_params="next_frame_tiny", stop_loop_early=True, resize_height_factor=2, resize_width_factor=2, wm_eval_rollout_ratios=[1], rl_env_max_episode_steps=7, eval_rl_env_max_episode_steps=7, simulated_rollout_length=2, eval_sampling_temps=[0.0, 1.0], )
Tiny set for testing. def rlmb_ppo_tiny(): """Tiny set for testing.""" hparams = rlmb_ppo_base() hparams = hparams.override_from_dict(_rlmb_tiny_overrides()) update_hparams(hparams, dict( ppo_epochs_num=2, ppo_epoch_length=10, real_ppo_epoch_length=36, real_ppo_effective_num_agents=2, real_batch_size=1, eval_batch_size=1, )) return hparams
Tiny set for testing. def rlmb_dqn_tiny(): """Tiny set for testing.""" hparams = rlmb_dqn_base() hparams = hparams.override_from_dict(_rlmb_tiny_overrides()) update_hparams(hparams, dict( simulated_rollout_length=2, dqn_time_limit=2, dqn_num_frames=128, real_dqn_replay_buffer_replay_capacity=100, dqn_replay_buffer_replay_capacity=100, real_dqn_agent_min_replay_history=10, dqn_agent_min_replay_history=10, )) return hparams
Tiny setting with a stochastic next-frame model. def rlmb_tiny_stochastic(): """Tiny setting with a stochastic next-frame model.""" hparams = rlmb_ppo_tiny() hparams.epochs = 1 # Too slow with 2 for regular runs. hparams.generative_model = "next_frame_basic_stochastic" hparams.generative_model_params = "next_frame_basic_stochastic" return hparams
Tiny setting with a recurrent next-frame model. def rlmb_tiny_recurrent(): """Tiny setting with a recurrent next-frame model.""" hparams = rlmb_ppo_tiny() hparams.epochs = 1 # Too slow with 2 for regular runs. hparams.generative_model = "next_frame_basic_recurrent" hparams.generative_model_params = "next_frame_basic_recurrent" return hparams
Tiny setting with a tiny sv2p model. def rlmb_tiny_sv2p(): """Tiny setting with a tiny sv2p model.""" hparams = rlmb_ppo_tiny() hparams.generative_model = "next_frame_sv2p" hparams.generative_model_params = "next_frame_sv2p_tiny" hparams.grayscale = False return hparams
Grid over games and frames, and 5 runs each for variance. def rlmb_grid(rhp): """Grid over games and frames, and 5 runs each for variance.""" rhp.set_categorical("loop.game", ["breakout", "pong", "freeway"]) base = 100000 medium = base // 2 small = medium // 2 rhp.set_discrete("loop.num_real_env_frames", [base, medium, small]) # Dummy parameter to get 5 runs for each configuration rhp.set_discrete("model.moe_loss_coef", list(range(5)))
Merge multiple HParams into one with scopes. def merge_unscoped_hparams(scopes_and_hparams): """Merge multiple HParams into one with scopes.""" merged_values = {} for (scope, hparams) in scopes_and_hparams: for key, value in six.iteritems(hparams.values()): scoped_key = "%s.%s" % (scope, key) merged_values[scoped_key] = value return hparam.HParams(**merged_values)
Split single HParams with scoped keys into multiple. def split_scoped_hparams(scopes, merged_hparams): """Split single HParams with scoped keys into multiple.""" split_values = {scope: {} for scope in scopes} merged_values = merged_hparams.values() for scoped_key, value in six.iteritems(merged_values): scope = scoped_key.split(".")[0] key = scoped_key[len(scope) + 1:] split_values[scope][key] = value return [ hparam.HParams(**split_values[scope]) for scope in scopes ]
Create HParams suitable for training loop from scoped HParams. Args: scoped_overrides: HParams, with keys all scoped by one of HP_SCOPES. These parameters are overrides for the base HParams created by create_loop_hparams. trial_id: str, trial identifier. This is used to register unique HParams names for the underlying model and ppo HParams. Returns: HParams suitable for passing to training_loop. def training_loop_hparams_from_scoped_overrides(scoped_overrides, trial_id): """Create HParams suitable for training loop from scoped HParams. Args: scoped_overrides: HParams, with keys all scoped by one of HP_SCOPES. These parameters are overrides for the base HParams created by create_loop_hparams. trial_id: str, trial identifier. This is used to register unique HParams names for the underlying model and ppo HParams. Returns: HParams suitable for passing to training_loop. """ trial_hp_overrides = scoped_overrides.values() # Create loop, model, and ppo base HParams loop_hp = create_loop_hparams() model_hp_name = trial_hp_overrides.get( "loop.generative_model_params", loop_hp.generative_model_params) model_hp = registry.hparams(model_hp_name).parse(FLAGS.hparams) base_algo_params_name = trial_hp_overrides.get( "loop.base_algo_params", loop_hp.base_algo_params) algo_hp = registry.hparams(base_algo_params_name) # Merge them and then override with the scoped overrides combined_hp = merge_unscoped_hparams( zip(HP_SCOPES, [loop_hp, model_hp, algo_hp])) combined_hp.override_from_dict(trial_hp_overrides) # Split out the component hparams loop_hp, model_hp, algo_hp = ( split_scoped_hparams(HP_SCOPES, combined_hp)) # Dynamic register the model hp and set the new name in loop_hp model_hp_name = "model_hp_%s" % str(trial_id) dynamic_register_hparams(model_hp_name, model_hp) loop_hp.generative_model_params = model_hp_name # Dynamic register the algo hp and set the new name in loop_hp algo_hp_name = "algo_hp_%s" % str(trial_id) dynamic_register_hparams(algo_hp_name, algo_hp) loop_hp.base_algo_params = algo_hp_name return loop_hp
Get mapping from keyboard keys to actions. Required by gym.utils.play in environment or top level wrapper. Returns: { Unicode code point for keyboard key: action (formatted for step()), ... } def get_keys_to_action(self): """Get mapping from keyboard keys to actions. Required by gym.utils.play in environment or top level wrapper. Returns: { Unicode code point for keyboard key: action (formatted for step()), ... } """ # Based on gym AtariEnv.get_keys_to_action() keyword_to_key = { "UP": ord("w"), "DOWN": ord("s"), "LEFT": ord("a"), "RIGHT": ord("d"), "FIRE": ord(" "), } keys_to_action = {} for action_id, action_meaning in enumerate(self.action_meanings): keys_tuple = tuple(sorted([ key for keyword, key in keyword_to_key.items() if keyword in action_meaning])) assert keys_tuple not in keys_to_action keys_to_action[keys_tuple] = action_id # Special actions: keys_to_action[(ord("r"),)] = self.RETURN_DONE_ACTION keys_to_action[(ord("c"),)] = self.TOGGLE_WAIT_ACTION keys_to_action[(ord("n"),)] = self.WAIT_MODE_NOOP_ACTION return keys_to_action
Pass action to underlying environment(s) or perform special action. def step(self, action): """Pass action to underlying environment(s) or perform special action.""" # Special codes if action in self._player_actions(): envs_step_tuples = self._player_actions()[action]() elif self._wait and action == self.name_to_action_num["NOOP"]: # Ignore no-op, do not pass to environment. envs_step_tuples = self._last_step_tuples else: # Run action on environment(s). if action == self.WAIT_MODE_NOOP_ACTION: action = self.name_to_action_num["NOOP"] # Perform action on underlying environment(s). envs_step_tuples = self._step_envs(action) self._update_statistics(envs_step_tuples) self._last_step_tuples = envs_step_tuples ob, reward, done, info = self._player_step_tuple(envs_step_tuples) return ob, reward, done, info
Expand observation array with additional information header (top rows). Args: ob: observation reward: reward to be included in header. cumulative_reward: total cumulated reward to be included in header. Returns: Expanded observation array. def _augment_observation(self, ob, reward, cumulative_reward): """"Expand observation array with additional information header (top rows). Args: ob: observation reward: reward to be included in header. cumulative_reward: total cumulated reward to be included in header. Returns: Expanded observation array. """ img = PIL_Image().new("RGB", (ob.shape[1], self.HEADER_HEIGHT,)) draw = PIL_ImageDraw().Draw(img) draw.text( (1, 0), "c:{:3}, r:{:3}".format(int(cumulative_reward), int(reward)), fill=(255, 0, 0) ) draw.text( (1, 15), "fc:{:3}".format(int(self._frame_counter)), fill=(255, 0, 0) ) header = np.asarray(img) del img header.setflags(write=1) # Top row color indicates if WAIT MODE is on. if self._wait: pixel_fill = (0, 255, 0) else: pixel_fill = (255, 0, 0) header[0, :, :] = pixel_fill return np.concatenate([header, ob], axis=0)
Construct observation, return usual step tuple. Args: envs_step_tuples: tuples. Returns: Step tuple: ob, reward, done, info ob: concatenated images [simulated observation, real observation, difference], with additional informations in header. reward: real environment reward done: True iff. envs_step_tuples['real_env'][2] is True info: real environment info def _player_step_tuple(self, envs_step_tuples): """Construct observation, return usual step tuple. Args: envs_step_tuples: tuples. Returns: Step tuple: ob, reward, done, info ob: concatenated images [simulated observation, real observation, difference], with additional informations in header. reward: real environment reward done: True iff. envs_step_tuples['real_env'][2] is True info: real environment info """ ob_real, reward_real, _, _ = envs_step_tuples["real_env"] ob_sim, reward_sim, _, _ = envs_step_tuples["sim_env"] ob_err = absolute_hinge_difference(ob_sim, ob_real) ob_real_aug = self._augment_observation(ob_real, reward_real, self.cumulative_real_reward) ob_sim_aug = self._augment_observation(ob_sim, reward_sim, self.cumulative_sim_reward) ob_err_aug = self._augment_observation( ob_err, reward_sim - reward_real, self.cumulative_sim_reward - self.cumulative_real_reward ) ob = np.concatenate([ob_sim_aug, ob_real_aug, ob_err_aug], axis=1) _, reward, done, info = envs_step_tuples["real_env"] return ob, reward, done, info
Reset simulated and real environments. def reset(self): """Reset simulated and real environments.""" self._frame_counter = 0 ob_real = self.real_env.reset() # Initialize simulated environment with frames from real one. self.sim_env.add_to_initial_stack(ob_real) for _ in range(3): ob_real, _, _, _ = self.real_env.step(self.name_to_action_num["NOOP"]) self.sim_env.add_to_initial_stack(ob_real) ob_sim = self.sim_env.reset() assert np.all(ob_real == ob_sim) self._last_step_tuples = self._pack_step_tuples((ob_real, 0, False, {}), (ob_sim, 0, False, {})) self.set_zero_cumulative_rewards() ob, _, _, _ = self._player_step_tuple(self._last_step_tuples) return ob
Perform step(action) on environments and update initial_frame_stack. def _step_envs(self, action): """Perform step(action) on environments and update initial_frame_stack.""" self._frame_counter += 1 real_env_step_tuple = self.real_env.step(action) sim_env_step_tuple = self.sim_env.step(action) self.sim_env.add_to_initial_stack(real_env_step_tuple[0]) return self._pack_step_tuples(real_env_step_tuple, sim_env_step_tuple)
Augment observation, return usual step tuple. def _player_step_tuple(self, envs_step_tuples): """Augment observation, return usual step tuple.""" ob, reward, done, info = envs_step_tuples["env"] ob = self._augment_observation(ob, reward, self.cumulative_reward) return ob, reward, done, info
Compute time first and second-order derivative channels. Args: filterbanks: float32 tensor with shape [batch_size, len, num_bins, 1] name: scope name Returns: float32 tensor with shape [batch_size, len, num_bins, 3] def add_delta_deltas(filterbanks, name=None): """Compute time first and second-order derivative channels. Args: filterbanks: float32 tensor with shape [batch_size, len, num_bins, 1] name: scope name Returns: float32 tensor with shape [batch_size, len, num_bins, 3] """ delta_filter = np.array([2, 1, 0, -1, -2]) delta_delta_filter = scipy.signal.convolve(delta_filter, delta_filter, "full") delta_filter_stack = np.array( [[0] * 4 + [1] + [0] * 4, [0] * 2 + list(delta_filter) + [0] * 2, list(delta_delta_filter)], dtype=np.float32).T[:, None, None, :] delta_filter_stack /= np.sqrt( np.sum(delta_filter_stack**2, axis=0, keepdims=True)) filterbanks = tf.nn.conv2d( filterbanks, delta_filter_stack, [1, 1, 1, 1], "SAME", data_format="NHWC", name=name) return filterbanks
Implement mel-filterbank extraction using tf ops. Args: waveforms: float32 tensor with shape [batch_size, max_len] sample_rate: sampling rate of the waveform dither: stddev of Gaussian noise added to waveform to prevent quantization artefacts preemphasis: waveform high-pass filtering constant frame_length: frame length in ms frame_step: frame_Step in ms fft_length: number of fft bins window_fn: windowing function lower_edge_hertz: lowest frequency of the filterbank upper_edge_hertz: highest frequency of the filterbank num_mel_bins: filterbank size log_noise_floor: clip small values to prevent numeric overflow in log apply_mask: When working on a batch of samples, set padding frames to zero Returns: filterbanks: a float32 tensor with shape [batch_size, len, num_bins, 1] def compute_mel_filterbank_features( waveforms, sample_rate=16000, dither=1.0 / np.iinfo(np.int16).max, preemphasis=0.97, frame_length=25, frame_step=10, fft_length=None, window_fn=functools.partial(tf.contrib.signal.hann_window, periodic=True), lower_edge_hertz=80.0, upper_edge_hertz=7600.0, num_mel_bins=80, log_noise_floor=1e-3, apply_mask=True): """Implement mel-filterbank extraction using tf ops. Args: waveforms: float32 tensor with shape [batch_size, max_len] sample_rate: sampling rate of the waveform dither: stddev of Gaussian noise added to waveform to prevent quantization artefacts preemphasis: waveform high-pass filtering constant frame_length: frame length in ms frame_step: frame_Step in ms fft_length: number of fft bins window_fn: windowing function lower_edge_hertz: lowest frequency of the filterbank upper_edge_hertz: highest frequency of the filterbank num_mel_bins: filterbank size log_noise_floor: clip small values to prevent numeric overflow in log apply_mask: When working on a batch of samples, set padding frames to zero Returns: filterbanks: a float32 tensor with shape [batch_size, len, num_bins, 1] """ # `stfts` is a complex64 Tensor representing the short-time Fourier # Transform of each signal in `signals`. Its shape is # [batch_size, ?, fft_unique_bins] # where fft_unique_bins = fft_length // 2 + 1 # Find the wave length: the largest index for which the value is !=0 # note that waveforms samples that are exactly 0.0 are quite common, so # simply doing sum(waveforms != 0, axis=-1) will not work correctly. wav_lens = tf.reduce_max( tf.expand_dims(tf.range(tf.shape(waveforms)[1]), 0) * tf.to_int32(tf.not_equal(waveforms, 0.0)), axis=-1) + 1 if dither > 0: waveforms += tf.random_normal(tf.shape(waveforms), stddev=dither) if preemphasis > 0: waveforms = waveforms[:, 1:] - preemphasis * waveforms[:, :-1] wav_lens -= 1 frame_length = int(frame_length * sample_rate / 1e3) frame_step = int(frame_step * sample_rate / 1e3) if fft_length is None: fft_length = int(2**(np.ceil(np.log2(frame_length)))) stfts = tf.contrib.signal.stft( waveforms, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length, window_fn=window_fn, pad_end=True) stft_lens = (wav_lens + (frame_step - 1)) // frame_step masks = tf.to_float(tf.less_equal( tf.expand_dims(tf.range(tf.shape(stfts)[1]), 0), tf.expand_dims(stft_lens, 1))) # An energy spectrogram is the magnitude of the complex-valued STFT. # A float32 Tensor of shape [batch_size, ?, 257]. magnitude_spectrograms = tf.abs(stfts) # Warp the linear-scale, magnitude spectrograms into the mel-scale. num_spectrogram_bins = magnitude_spectrograms.shape[-1].value linear_to_mel_weight_matrix = ( tf.contrib.signal.linear_to_mel_weight_matrix( num_mel_bins, num_spectrogram_bins, sample_rate, lower_edge_hertz, upper_edge_hertz)) mel_spectrograms = tf.tensordot( magnitude_spectrograms, linear_to_mel_weight_matrix, 1) # Note: Shape inference for tensordot does not currently handle this case. mel_spectrograms.set_shape(magnitude_spectrograms.shape[:-1].concatenate( linear_to_mel_weight_matrix.shape[-1:])) log_mel_sgram = tf.log(tf.maximum(log_noise_floor, mel_spectrograms)) if apply_mask: log_mel_sgram *= tf.expand_dims(tf.to_float(masks), -1) return tf.expand_dims(log_mel_sgram, -1, name="mel_sgrams")
Plays the env problem by randomly sampling actions for `num_steps`. def play_env_problem_randomly(env_problem, num_steps): """Plays the env problem by randomly sampling actions for `num_steps`.""" # Reset all environments. env_problem.reset() # Play all environments, sampling random actions each time. for _ in range(num_steps): # Sample batch_size actions from the action space and stack them. actions = np.stack([env_problem.action_space.sample() for _ in range( env_problem.batch_size)]) # Execute actions, observations are stored in `env_problem`. _, _, dones, _ = env_problem.step(actions) # Get the indices where we are done and reset those. env_problem.reset(indices=done_indices(dones))
Generates samples of text from the provided vocabulary. Args: plain_vocab: vocabulary. distribution: distribution. train_samples: samples for training. length: length. Returns: train_indices (np.array of Integers): random integers for training. shape = [num_samples, length] test_indices (np.array of Integers): random integers for testing. shape = [num_samples, length] plain_vocab (list of Integers): unique vocabularies. def generate_plaintext_random(plain_vocab, distribution, train_samples, length): """Generates samples of text from the provided vocabulary. Args: plain_vocab: vocabulary. distribution: distribution. train_samples: samples for training. length: length. Returns: train_indices (np.array of Integers): random integers for training. shape = [num_samples, length] test_indices (np.array of Integers): random integers for testing. shape = [num_samples, length] plain_vocab (list of Integers): unique vocabularies. """ if distribution is not None: assert len(distribution) == len(plain_vocab) train_indices = np.random.choice( range(len(plain_vocab)), (train_samples, length), p=distribution) return train_indices
Encrypt plain text with a single shift layer. Args: plaintext (list of list of Strings): a list of plain text to encrypt. plain_vocab (list of Integer): unique vocabularies being used. shift (Integer): number of shift, shift to the right if shift is positive. Returns: ciphertext (list of Strings): encrypted plain text. def encipher_shift(plaintext, plain_vocab, shift): """Encrypt plain text with a single shift layer. Args: plaintext (list of list of Strings): a list of plain text to encrypt. plain_vocab (list of Integer): unique vocabularies being used. shift (Integer): number of shift, shift to the right if shift is positive. Returns: ciphertext (list of Strings): encrypted plain text. """ ciphertext = [] cipher = ShiftEncryptionLayer(plain_vocab, shift) for _, sentence in enumerate(plaintext): cipher_sentence = [] for _, character in enumerate(sentence): encrypted_char = cipher.encrypt_character(character) cipher_sentence.append(encrypted_char) ciphertext.append(cipher_sentence) return ciphertext
Encrypt plain text with given key. Args: plaintext (list of list of Strings): a list of plain text to encrypt. plain_vocab (list of Integer): unique vocabularies being used. key (list of Integer): key to encrypt cipher using Vigenere table. Returns: ciphertext (list of Strings): encrypted plain text. def encipher_vigenere(plaintext, plain_vocab, key): """Encrypt plain text with given key. Args: plaintext (list of list of Strings): a list of plain text to encrypt. plain_vocab (list of Integer): unique vocabularies being used. key (list of Integer): key to encrypt cipher using Vigenere table. Returns: ciphertext (list of Strings): encrypted plain text. """ ciphertext = [] # generate Vigenere table layers = [ ShiftEncryptionLayer(plain_vocab, i) for i in range(len(plain_vocab)) ] for i, sentence in enumerate(plaintext): cipher_sentence = [] for j, character in enumerate(sentence): key_idx = key[j % len(key)] encrypted_char = layers[key_idx].encrypt_character(character) cipher_sentence.append(encrypted_char) ciphertext.append(cipher_sentence) return ciphertext
A stack of super_lm layers. Args: inputs: a list of Tensors attention_bias: list of bias Tensor for self-attention (see common_attention.attention_bias()) hparams: hyperparameters for model mp: a Parallelism object padding: a string Returns: y: a list of Tensors extra_loss: an optional scalar def _super_stack(inputs, attention_bias, hparams, mp, padding="LEFT"): """A stack of super_lm layers. Args: inputs: a list of Tensors attention_bias: list of bias Tensor for self-attention (see common_attention.attention_bias()) hparams: hyperparameters for model mp: a Parallelism object padding: a string Returns: y: a list of Tensors extra_loss: an optional scalar """ layers = hparams.layers.strip(",").split(",") moe_hidden_sizes = [int(s) for s in hparams.moe_hidden_sizes.split(",")] if hparams.diet_experts: hsize, = moe_hidden_sizes def _diet_expert(x): return diet.diet_expert(x, hsize, diet.diet_adam_optimizer_params()) expert_fn = _diet_expert else: expert_fn = expert_utils.ffn_expert_fn( hparams.hidden_size, moe_hidden_sizes, hparams.hidden_size) # scaled_dot_product_attention_with_projections uses a 3d attention bias # (no heads), where multihead_attention uses 4d attention bias. attention_bias_3d = mp(tf.squeeze, attention_bias, 1) mix_size = int(hparams.mix_fraction * hparams.hidden_size) accumulator = inputs x = inputs extra_losses = [] for layer_num, layer_type in enumerate(layers): with tf.variable_scope("%s_%d" % (layer_type, layer_num)): tf.logging.info("%s_%d" % (layer_type, layer_num)) if layer_type == "a": # accumulate accumulator = mp(tf.add, x, accumulator) x = accumulator elif layer_type == "n": # normalize x = mp(common_layers.apply_norm, x, hparams.norm_type, hparams.hidden_size, hparams.norm_epsilon) elif layer_type == "d": # dropout x = mp(tf.nn.dropout, x, 1.0 - hparams.layer_prepostprocess_dropout) elif layer_type == "m": # mix across shards def _split(t): return tuple(tf.split( t, [mix_size, hparams.hidden_size - mix_size], 2)) to_mix, to_keep = mp(_split, x) mixed = expert_utils.all_reduce_ring(to_mix, mp) mixed = mp(tf.multiply, mixed, mp.n ** -0.5) x = mp(lambda a, b: tf.concat([a, b], 2), mixed, to_keep) elif layer_type == "att": # single-head attention q = mp(tf.layers.dense, x, hparams.hidden_size, use_bias=False, name="q_transform") x = mp( common_attention.scaled_dot_product_attention_simple, q, x, x, attention_bias_3d) x = mp(tf.layers.dense, x, hparams.hidden_size, use_bias=False, name="o_transform") elif layer_type == "multihead-att": # multi-head attention x = mp( common_attention.multihead_attention, x, None, attention_bias, # bias hparams.multihead_attention_key_channels or hparams.hidden_size, hparams.multihead_attention_value_channels or hparams.hidden_size, hparams.hidden_size, hparams.multihead_attention_num_heads, hparams.attention_dropout) elif layer_type == "ffn": x = mp( common_layers.dense_relu_dense, x, hparams.filter_size, hparams.hidden_size) elif layer_type == "conv": # convolution x = mp( common_layers.conv1d, x, hparams.hidden_size, hparams.kernel_height, activation=tf.nn.relu, padding=padding, ) elif layer_type == "moe": # mixture of experts - each model shard has its own local MoE. x, loss = mp( expert_utils.local_moe, x, train=hparams.mode == tf.estimator.ModeKeys.TRAIN, expert_fn=expert_fn, num_experts=hparams.moe_num_experts, k=hparams.moe_k, loss_coef=hparams.moe_loss_coef) extra_losses.extend(loss) else: assert False, "unknown sublayer %s" % layer_type if extra_losses: extra_loss = tf.add_n(extra_losses) else: extra_loss = None return x, extra_loss
Set of hyperparameters. def super_lm_base(): """Set of hyperparameters.""" hparams = common_hparams.basic_params1() hparams.hidden_size = 512 hparams.moe_hidden_sizes = "512" hparams.batch_size = 16384 hparams.max_length = 0 # All hyperparameters ending in "dropout" are automatically set to 0.0 # when not in training mode. hparams.layer_prepostprocess_dropout = 0.0 hparams.symbol_dropout = 0.1 hparams.add_hparam("attention_dropout", 0.0) hparams.label_smoothing = 0.0 hparams.clip_grad_norm = 0. # i.e. no gradient clipping hparams.optimizer = "Adafactor" hparams.learning_rate_decay_scheme = "noam" hparams.learning_rate = 0.1 hparams.learning_rate_warmup_steps = 8000 hparams.initializer_gain = 1.0 hparams.initializer = "uniform_unit_scaling" hparams.weight_decay = 0.0 hparams.shared_embedding_and_softmax_weights = False hparams.layer_preprocess_sequence = "n" hparams.layer_postprocess_sequence = "da" # we only want one data shard. hparams.no_data_parallelism = True # bypass the symbol modality so that we can use model parallelism. hparams.bottom = { "inputs": modalities.identity_bottom, "targets": modalities.identity_bottom, } hparams.top = { "targets": modalities.identity_top, } hparams.add_hparam("filter_size", 512) hparams.add_hparam("mix_fraction", 0.5) # attention-related flags hparams.add_hparam("multihead_attention_num_heads", 4) hparams.add_hparam("multihead_attention_key_channels", 0) hparams.add_hparam("multihead_attention_value_channels", 0) hparams.add_hparam("pos", "timing") # timing, none hparams.add_hparam( "layers", ("n,att,m,d,a," "n,ffn,m,d,a,") * 4 + "n,ffn,d") # Number of model shards - each one has separate parameters. # Changing this number invalidates checkpoints. hparams.add_hparam("num_model_shards", 8) hparams.add_hparam("diet_experts", False) return hparams
Add mixture of experts with ~1B params. def super_lm_moe(): """Add mixture of experts with ~1B params.""" hparams = super_lm_base() hparams.layers = ( ("n,att,m,d,a," "n,moe,m,d,a,") * 4 + "n,ffn,d") hparams.moe_num_experts = 32 hparams.moe_hidden_sizes = "1024" return hparams
Series of architectural experiments on Translation. # run on 8-core setup 119M params, einsum=0.95e13 Returns: a hparams def xmoe_tr_dense_2k(): """Series of architectural experiments on Translation. # run on 8-core setup 119M params, einsum=0.95e13 Returns: a hparams """ hparams = mtf_transformer2.mtf_bitransformer_base() hparams.encoder_layers = ["self_att", "drd"] * 4 hparams.decoder_layers = ["self_att", "enc_att", "drd"] * 4 hparams.batch_size = 64 hparams.shared_embedding_and_softmax_weights = True hparams.mesh_shape = "batch:8" return hparams
Mixture of experts (16 experts). 623M Params, einsum=1.09e13 Returns: a hparams def xmoe_tr_1d(): """Mixture of experts (16 experts). 623M Params, einsum=1.09e13 Returns: a hparams """ hparams = xmoe_tr_dense_2k() hparams.encoder_layers = ["self_att", "moe_1d"] * 4 hparams.decoder_layers = ["self_att", "enc_att", "moe_1d"] * 4 hparams.layout = "batch:batch;experts:batch" hparams.moe_hidden_size = 2048 hparams.moe_num_experts = 16 return hparams
Mixture of experts (16 experts). 623M Params, einsum=1.09e13 Returns: a hparams def xmoe_tr_2d(): """Mixture of experts (16 experts). 623M Params, einsum=1.09e13 Returns: a hparams """ hparams = xmoe_tr_dense_2k() hparams.mesh_shape = "b0:2;b1:4" hparams.outer_batch_size = 4 hparams.layout = "outer_batch:b0;inner_batch:b1,expert_x:b1,expert_y:b0" hparams.encoder_layers = ["self_att", "moe_2d"] * 4 hparams.decoder_layers = ["self_att", "enc_att", "moe_2d"] * 4 hparams.moe_hidden_size = 2048 hparams.moe_experts_x = 4 hparams.moe_experts_y = 4 return hparams
Series of architectural experiments on cheap language models. For all of these architectures, we run on languagemodel_lm1b8k_packed for 32000 steps. All log-perplexities are per-token - multiply by 1.298 for per-word Results: model params(M) einsum alltoall mxu-util log-ppl xmoe_dense_4k 30 3.0e12 0 45% 3.31 xmoe_dense_8k 46 4.7e12 0 49% 3.24 xmoe_dense_64k 282 2.8e13 0 3.06 xmoe_top_2 282 4.0e12 3.4e8 36% 3.07 xmoe_top_2_c15 282 4.5e12 4.0e8 38% 3.07 xmoe_2d 282 5.3e12 7.6e8 34% 3.06 Trained at 4x the batch size: xmoe_2d_88 1090 2.1e13 3.0e9 24% 3.07 Note: configurations and code are likely to change without notice. Returns: a hparams def xmoe_dense_4k(): """Series of architectural experiments on cheap language models. For all of these architectures, we run on languagemodel_lm1b8k_packed for 32000 steps. All log-perplexities are per-token - multiply by 1.298 for per-word Results: model params(M) einsum alltoall mxu-util log-ppl xmoe_dense_4k 30 3.0e12 0 45% 3.31 xmoe_dense_8k 46 4.7e12 0 49% 3.24 xmoe_dense_64k 282 2.8e13 0 3.06 xmoe_top_2 282 4.0e12 3.4e8 36% 3.07 xmoe_top_2_c15 282 4.5e12 4.0e8 38% 3.07 xmoe_2d 282 5.3e12 7.6e8 34% 3.06 Trained at 4x the batch size: xmoe_2d_88 1090 2.1e13 3.0e9 24% 3.07 Note: configurations and code are likely to change without notice. Returns: a hparams """ hparams = mtf_transformer.mtf_transformer_base_lm() hparams.attention_dropout = 0.0 hparams.relu_dropout = 0.0 hparams.layer_prepostprocess_dropout = 0.0 # The following hparams are constant across all these experiments. hparams.batch_size = 128 hparams.d_model = 512 hparams.d_kv = 128 hparams.num_heads = 4 hparams.decoder_layers = ["att", "drd"] * 4 hparams.shared_embedding_and_softmax_weights = False hparams.learning_rate_schedule = "rsqrt_decay" # We will vary the following parameters related to the ffn/moe layers. hparams.d_ff = 4096 hparams.layout = "batch:batch;vocab:model;d_ff:model;heads:model" hparams.mesh_shape = "batch:8" return hparams
Mixture of experts (16 experts). def xmoe_top_2(): """Mixture of experts (16 experts).""" hparams = xmoe_dense_4k() moe.set_default_moe_hparams(hparams) hparams.mesh_shape = "all:8" hparams.layout = "batch:all;experts:all" return hparams
Two-dimensional hierarchical mixture of 16 experts. def xmoe_2d(): """Two-dimensional hierarchical mixture of 16 experts.""" hparams = xmoe_top_2() hparams.decoder_layers = ["att", "hmoe"] * 4 hparams.mesh_shape = "b0:2;b1:4" hparams.outer_batch_size = 4 hparams.layout = "outer_batch:b0;inner_batch:b1,expert_x:b1,expert_y:b0" hparams.moe_num_experts = [4, 4] return hparams
Series of architectural experiments on language modeling. Larger models than the ones above. All models are trained on sequences of 1024 tokens. We assume infinite training data, so no dropout necessary. We process 2^36 tokens in training = 524288 steps at batch size 128 TODO(noam): find a large enough dataset for these experiments. You can use languagemodel_wiki_noref_v32k_l1k, but this is too small, (1 epoch = ~46000 steps) so training will cover about 11 epochs. Note: configurations and code are likely to change without notice. Run on TPU 4x4 for 524288 steps unless otherwise indicated. Args: sz: an integer Returns: a hparams def xmoe2_dense(sz): """Series of architectural experiments on language modeling. Larger models than the ones above. All models are trained on sequences of 1024 tokens. We assume infinite training data, so no dropout necessary. We process 2^36 tokens in training = 524288 steps at batch size 128 TODO(noam): find a large enough dataset for these experiments. You can use languagemodel_wiki_noref_v32k_l1k, but this is too small, (1 epoch = ~46000 steps) so training will cover about 11 epochs. Note: configurations and code are likely to change without notice. Run on TPU 4x4 for 524288 steps unless otherwise indicated. Args: sz: an integer Returns: a hparams """ hparams = mtf_transformer.mtf_transformer_paper_lm(sz) hparams.attention_dropout = 0.0 hparams.relu_dropout = 0.0 hparams.layer_prepostprocess_dropout = 0.0 hparams.max_length = 1024 hparams.batch_size = 128 hparams.learning_rate_schedule = "rsqrt_decay*linear_decay" hparams.learning_rate_decay_steps = 65536 hparams.layout = "batch:batch;vocab:model;d_ff:model;heads:model" hparams.mesh_shape = "batch:32" return hparams
Model incorporating mixture-of-experts and local-attention. ~6B parameters 32 experts in 3 hierarchichal moe layers. Returns: a hparams def xmoe2_v1(): """Model incorporating mixture-of-experts and local-attention. ~6B parameters 32 experts in 3 hierarchichal moe layers. Returns: a hparams """ hparams = xmoe2_dense(0) moe.set_default_moe_hparams(hparams) hparams.decoder_layers = ( ["local_att", "local_att", "drd", "att", "drd", "local_att", "local_att", "hmoe"] * 4)[:-1] hparams.d_ff = 2048 hparams.d_kv = 128 hparams.moe_hidden_size = 32768 hparams.mesh_shape = "b0:4;b1:8" hparams.layout = "outer_batch:b0;inner_batch:b1,expert_x:b1,expert_y:b0" hparams.outer_batch_size = 4 hparams.moe_num_experts = [8, 4] hparams.num_heads = 4 return hparams
128 experts, ~25B params - Train for 131072 steps on 8x8. def xmoe2_v1_x128(): """128 experts, ~25B params - Train for 131072 steps on 8x8.""" hparams = xmoe2_v1() hparams.moe_num_experts = [16, 8] hparams.outer_batch_size = 8 hparams.mesh_shape = "b0:8;b1:16" hparams.batch_size = 512 hparams.learning_rate_decay_steps = 16384 return hparams
Test on local cpu. def xmoe2_tiny(): """Test on local cpu.""" hparams = xmoe2_v1() hparams.decoder_layers = [ "local_att", "att", "compressed_att", "drd", "hmoe"] hparams.d_model = 128 hparams.moe_hidden_size = 512 hparams.outer_batch_size = 0 hparams.batch_size = 2 hparams.mesh_shape = "" hparams.activation_dtype = "float32" return hparams
With sequence length 4096. def xmoe2_v1_l4k(): """With sequence length 4096.""" hparams = xmoe2_v1() hparams.batch_size = 32 hparams.max_length = 4096 hparams.split_to_length = 4096 hparams.reshape_logits_hack = True return hparams
With sequence length 4096. def xmoe2_v1_l4k_local_only(): """With sequence length 4096.""" hparams = xmoe2_v1_l4k() hparams.decoder_layers = [ "local_att" if l == "att" else l for l in hparams.decoder_layers] return hparams
With sequence length 4096. def xmoe2_v1_l4k_global_only(): """With sequence length 4096.""" hparams = xmoe2_v1_l4k() hparams.decoder_layers = [ "att" if l == "local_att" else l for l in hparams.decoder_layers] return hparams
With compressed attention. def xmoe2_v1_l4k_compressed_c4(): """With compressed attention.""" hparams = xmoe2_v1_l4k() hparams.decoder_layers = [ "compressed_att" if l == "att" else l for l in hparams.decoder_layers] hparams.compression_factor = 4 return hparams
Set of architectural experiments - language model on wikipedia on a 2x2. 1 epoch = ~180k steps at batch size 32 - we may never finish an epoch! Returns: a hparams def wiki_2x2_base(): """Set of architectural experiments - language model on wikipedia on a 2x2. 1 epoch = ~180k steps at batch size 32 - we may never finish an epoch! Returns: a hparams """ hparams = mtf_transformer.mtf_transformer_base_lm() hparams.shared_embedding_and_softmax_weights = False # no dropout - dataset is big enough to avoid overfitting. hparams.attention_dropout = 0.0 hparams.relu_dropout = 0.0 hparams.layer_prepostprocess_dropout = 0.0 hparams.max_length = 1024 # 4 sequences per core hparams.batch_size = 32 # We don't use linear decay in these experiments, since we don't want # a sharp jump in quality at the end of the training schedule. # You can insert this once you find the right architecture. hparams.learning_rate_schedule = "rsqrt_decay" hparams.mesh_shape = "all:8" hparams.layout = "batch:all;experts:all" # parameters for mixture-of-experts moe.set_default_moe_hparams(hparams) hparams.moe_num_experts = 16 hparams.moe_hidden_size = 8192 hparams.decoder_layers = ["att", "drd"] * 6 hparams.d_model = 1024 hparams.d_ff = 2048 hparams.d_kv = 128 hparams.num_heads = 4 return hparams
Replace tokens instead of masking. def denoise_z15(): """Replace tokens instead of masking.""" hparams = xmoe2_dense_0() hparams.decoder_type = "denoising" hparams.noising_spec_train = {"type": "random_zipfian", "prob": 0.15} hparams.noising_use_eval_during_train = 0.25 return hparams
Denoising experiment. def denoise_v1_m15(): """Denoising experiment.""" hparams = xmoe2_v1() # no local attention # TODO(noam): non-masked version of local-attention hparams.decoder_layers = [ "att" if l == "local_att" else l for l in hparams.decoder_layers] hparams.decoder_type = "denoising" hparams.noising_spec_train = {"type": "mask", "prob": 0.15} return hparams
Downloads and extracts the dataset. Args: tmp_dir: temp directory to download and extract the dataset data_dir: The base directory where data and vocab files are stored. Returns: tmp_dir: temp directory containing the raw data. def _download_mlu_data(tmp_dir, data_dir): """Downloads and extracts the dataset. Args: tmp_dir: temp directory to download and extract the dataset data_dir: The base directory where data and vocab files are stored. Returns: tmp_dir: temp directory containing the raw data. """ if not tf.gfile.Exists(data_dir): tf.gfile.MakeDirs(data_dir) filename = os.path.basename(_URL) file_path = os.path.join(tmp_dir, filename) headers = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_13_1) " "AppleWebKit/537.36 (KHTML, like Gecko) " "Chrome/63.0.3239.132 Safari/537.36"} resp = requests.get(_URL, headers=headers) with open(file_path, "wb") as f: f.write(resp.content) with tarfile.open(file_path, "r:gz") as tar: tar.extractall(tmp_dir) return tmp_dir
Get a Counter with the ngrams of the given ID list. Args: ids: np.array or a list corresponding to a single sentence n: n-gram size Returns: collections.Counter with ID tuples as keys and 1s as values. def _get_ngram_counter(ids, n): """Get a Counter with the ngrams of the given ID list. Args: ids: np.array or a list corresponding to a single sentence n: n-gram size Returns: collections.Counter with ID tuples as keys and 1s as values. """ # Remove zero IDs used to pad the sequence. ids = [token_id for token_id in ids if token_id != 0] ngram_list = [tuple(ids[i:i + n]) for i in range(len(ids) + 1 - n)] ngrams = set(ngram_list) counts = collections.Counter() for ngram in ngrams: counts[ngram] = 1 return counts
Compute Fbeta score. Args: true_positives: Number of true positive ngrams. selected: Number of selected ngrams. relevant: Number of relevant ngrams. beta: 0 gives precision only, 1 gives F1 score, and Inf gives recall only. Returns: Fbeta score. def _get_fbeta_score(true_positives, selected, relevant, beta=1): """Compute Fbeta score. Args: true_positives: Number of true positive ngrams. selected: Number of selected ngrams. relevant: Number of relevant ngrams. beta: 0 gives precision only, 1 gives F1 score, and Inf gives recall only. Returns: Fbeta score. """ precision = 1 if selected > 0: precision = true_positives / selected if beta == 0: return precision recall = 1 if relevant > 0: recall = true_positives / relevant if precision > 0 and recall > 0: beta2 = beta * beta return (1 + beta2) * precision * recall / (beta2 * precision + recall) else: return 0
Compute the addition score (Equation 4 in the paper). def get_addition_score(source_counts, prediction_counts, target_counts): """Compute the addition score (Equation 4 in the paper).""" added_to_prediction_counts = prediction_counts - source_counts true_positives = sum((added_to_prediction_counts & target_counts).values()) selected = sum(added_to_prediction_counts.values()) # Note that in the paper the summation is done over all the ngrams in the # output rather than the ngrams in the following set difference. Since the # former does not make as much sense we compute the latter, which is also done # in the GitHub implementation. relevant = sum((target_counts - source_counts).values()) return _get_fbeta_score(true_positives, selected, relevant)
Compute the keep score (Equation 5 in the paper). def get_keep_score(source_counts, prediction_counts, target_counts): """Compute the keep score (Equation 5 in the paper).""" source_and_prediction_counts = source_counts & prediction_counts source_and_target_counts = source_counts & target_counts true_positives = sum((source_and_prediction_counts & source_and_target_counts).values()) selected = sum(source_and_prediction_counts.values()) relevant = sum(source_and_target_counts.values()) return _get_fbeta_score(true_positives, selected, relevant)
Compute the deletion score (Equation 6 in the paper). def get_deletion_score(source_counts, prediction_counts, target_counts, beta=0): """Compute the deletion score (Equation 6 in the paper).""" source_not_prediction_counts = source_counts - prediction_counts source_not_target_counts = source_counts - target_counts true_positives = sum((source_not_prediction_counts & source_not_target_counts).values()) selected = sum(source_not_prediction_counts.values()) relevant = sum(source_not_target_counts.values()) return _get_fbeta_score(true_positives, selected, relevant, beta=beta)
Compute the SARI score for a single prediction and one or more targets. Args: source_ids: a list / np.array of SentencePiece IDs prediction_ids: a list / np.array of SentencePiece IDs list_of_targets: a list of target ID lists / np.arrays max_gram_size: int. largest n-gram size we care about (e.g. 3 for unigrams, bigrams, and trigrams) beta_for_deletion: beta for deletion F score. Returns: the SARI score and its three components: add, keep, and deletion scores def get_sari_score(source_ids, prediction_ids, list_of_targets, max_gram_size=4, beta_for_deletion=0): """Compute the SARI score for a single prediction and one or more targets. Args: source_ids: a list / np.array of SentencePiece IDs prediction_ids: a list / np.array of SentencePiece IDs list_of_targets: a list of target ID lists / np.arrays max_gram_size: int. largest n-gram size we care about (e.g. 3 for unigrams, bigrams, and trigrams) beta_for_deletion: beta for deletion F score. Returns: the SARI score and its three components: add, keep, and deletion scores """ addition_scores = [] keep_scores = [] deletion_scores = [] for n in range(1, max_gram_size + 1): source_counts = _get_ngram_counter(source_ids, n) prediction_counts = _get_ngram_counter(prediction_ids, n) # All ngrams in the targets with count 1. target_counts = collections.Counter() # All ngrams in the targets with count r/num_targets, where r is the number # of targets where the ngram occurs. weighted_target_counts = collections.Counter() num_nonempty_targets = 0 for target_ids_i in list_of_targets: target_counts_i = _get_ngram_counter(target_ids_i, n) if target_counts_i: weighted_target_counts += target_counts_i num_nonempty_targets += 1 for gram in weighted_target_counts.keys(): weighted_target_counts[gram] /= num_nonempty_targets target_counts[gram] = 1 keep_scores.append(get_keep_score(source_counts, prediction_counts, weighted_target_counts)) deletion_scores.append(get_deletion_score(source_counts, prediction_counts, weighted_target_counts, beta_for_deletion)) addition_scores.append(get_addition_score(source_counts, prediction_counts, target_counts)) avg_keep_score = sum(keep_scores) / max_gram_size avg_addition_score = sum(addition_scores) / max_gram_size avg_deletion_score = sum(deletion_scores) / max_gram_size sari = (avg_keep_score + avg_addition_score + avg_deletion_score) / 3.0 return sari, avg_keep_score, avg_addition_score, avg_deletion_score
Computes the SARI scores from the given source, prediction and targets. Args: source_ids: A 2D tf.Tensor of size (batch_size , sequence_length) prediction_ids: A 2D tf.Tensor of size (batch_size, sequence_length) target_ids: A 3D tf.Tensor of size (batch_size, number_of_targets, sequence_length) max_gram_size: int. largest n-gram size we care about (e.g. 3 for unigrams, bigrams, and trigrams) Returns: A 4-tuple of 1D float Tensors of size (batch_size) for the SARI score and the keep, addition and deletion scores. def get_sari(source_ids, prediction_ids, target_ids, max_gram_size=4): """Computes the SARI scores from the given source, prediction and targets. Args: source_ids: A 2D tf.Tensor of size (batch_size , sequence_length) prediction_ids: A 2D tf.Tensor of size (batch_size, sequence_length) target_ids: A 3D tf.Tensor of size (batch_size, number_of_targets, sequence_length) max_gram_size: int. largest n-gram size we care about (e.g. 3 for unigrams, bigrams, and trigrams) Returns: A 4-tuple of 1D float Tensors of size (batch_size) for the SARI score and the keep, addition and deletion scores. """ def get_sari_numpy(source_ids, prediction_ids, target_ids): """Iterate over elements in the batch and call the SARI function.""" sari_scores = [] keep_scores = [] add_scores = [] deletion_scores = [] # Iterate over elements in the batch. for source_ids_i, prediction_ids_i, target_ids_i in zip( source_ids, prediction_ids, target_ids): sari, keep, add, deletion = get_sari_score( source_ids_i, prediction_ids_i, target_ids_i, max_gram_size, BETA_FOR_SARI_DELETION_F_MEASURE) sari_scores.append(sari) keep_scores.append(keep) add_scores.append(add) deletion_scores.append(deletion) return (np.asarray(sari_scores), np.asarray(keep_scores), np.asarray(add_scores), np.asarray(deletion_scores)) sari, keep, add, deletion = tf.py_func( get_sari_numpy, [source_ids, prediction_ids, target_ids], [tf.float64, tf.float64, tf.float64, tf.float64]) return sari, keep, add, deletion
Computes the SARI scores from the given source, prediction and targets. An approximate SARI scoring method since we do not glue word pieces or decode the ids and tokenize the output. By default, we use ngram order of 4. Also, this does not have beam search. Args: predictions: tensor, model predictions. labels: tensor, gold output. features: dict, containing inputs. Returns: sari: int, approx sari score def sari_score(predictions, labels, features, **unused_kwargs): """Computes the SARI scores from the given source, prediction and targets. An approximate SARI scoring method since we do not glue word pieces or decode the ids and tokenize the output. By default, we use ngram order of 4. Also, this does not have beam search. Args: predictions: tensor, model predictions. labels: tensor, gold output. features: dict, containing inputs. Returns: sari: int, approx sari score """ if "inputs" not in features: raise ValueError("sari_score requires inputs feature") # Convert the inputs and outputs to a [batch_size, sequence_length] tensor. inputs = tf.squeeze(features["inputs"], axis=[-1, -2]) outputs = tf.to_int32(tf.argmax(predictions, axis=-1)) outputs = tf.squeeze(outputs, axis=[-1, -2]) # Convert the labels to a [batch_size, 1, sequence_length] tensor. labels = tf.squeeze(labels, axis=[-1, -2]) labels = tf.expand_dims(labels, axis=1) score, _, _, _ = get_sari(inputs, outputs, labels) return score, tf.constant(1.0)
Download all MNIST files to directory unless they are there. def _get_mnist(directory): """Download all MNIST files to directory unless they are there.""" for filename in [ _MNIST_TRAIN_DATA_FILENAME, _MNIST_TRAIN_LABELS_FILENAME, _MNIST_TEST_DATA_FILENAME, _MNIST_TEST_LABELS_FILENAME ]: generator_utils.maybe_download(directory, filename, _MNIST_URL + filename)
Extract images from an MNIST file into a numpy array. Args: filename: The path to an MNIST images file. num_images: The number of images in the file. Returns: A numpy array of shape [number_of_images, height, width, channels]. def _extract_mnist_images(filename, num_images): """Extract images from an MNIST file into a numpy array. Args: filename: The path to an MNIST images file. num_images: The number of images in the file. Returns: A numpy array of shape [number_of_images, height, width, channels]. """ with gzip.open(filename) as bytestream: bytestream.read(16) buf = bytestream.read(_MNIST_IMAGE_SIZE * _MNIST_IMAGE_SIZE * num_images) data = np.frombuffer(buf, dtype=np.uint8) data = data.reshape(num_images, _MNIST_IMAGE_SIZE, _MNIST_IMAGE_SIZE, 1) return data
Extract labels from an MNIST file into integers. Args: filename: The path to an MNIST labels file. num_labels: The number of labels in the file. Returns: A int64 numpy array of shape [num_labels] def _extract_mnist_labels(filename, num_labels): """Extract labels from an MNIST file into integers. Args: filename: The path to an MNIST labels file. num_labels: The number of labels in the file. Returns: A int64 numpy array of shape [num_labels] """ with gzip.open(filename) as bytestream: bytestream.read(8) buf = bytestream.read(num_labels) labels = np.frombuffer(buf, dtype=np.uint8).astype(np.int64) return labels
Image generator for MNIST. Args: tmp_dir: path to temporary storage directory. training: a Boolean; if true, we use the train set, otherwise the test set. how_many: how many images and labels to generate. data_filename: file that contains features data. label_filename: file that contains labels. start_from: from which image to start. Returns: An instance of image_generator that produces MNIST images. def mnist_common_generator(tmp_dir, training, how_many, data_filename, label_filename, start_from=0): """Image generator for MNIST. Args: tmp_dir: path to temporary storage directory. training: a Boolean; if true, we use the train set, otherwise the test set. how_many: how many images and labels to generate. data_filename: file that contains features data. label_filename: file that contains labels. start_from: from which image to start. Returns: An instance of image_generator that produces MNIST images. """ data_path = os.path.join(tmp_dir, data_filename) labels_path = os.path.join(tmp_dir, label_filename) images = _extract_mnist_images(data_path, 60000 if training else 10000) labels = _extract_mnist_labels(labels_path, 60000 if training else 10000) # Shuffle the data to make sure classes are well distributed. data = list(zip(images, labels)) random.shuffle(data) images, labels = list(zip(*data)) return image_utils.image_generator(images[start_from:start_from + how_many], labels[start_from:start_from + how_many])
Image generator for MNIST. Args: tmp_dir: path to temporary storage directory. training: a Boolean; if true, we use the train set, otherwise the test set. how_many: how many images and labels to generate. start_from: from which image to start. Returns: An instance of image_generator that produces MNIST images. def mnist_generator(tmp_dir, training, how_many, start_from=0): """Image generator for MNIST. Args: tmp_dir: path to temporary storage directory. training: a Boolean; if true, we use the train set, otherwise the test set. how_many: how many images and labels to generate. start_from: from which image to start. Returns: An instance of image_generator that produces MNIST images. """ _get_mnist(tmp_dir) d = _MNIST_TRAIN_DATA_FILENAME if training else _MNIST_TEST_DATA_FILENAME l = _MNIST_TRAIN_LABELS_FILENAME if training else _MNIST_TEST_LABELS_FILENAME return mnist_common_generator(tmp_dir, training, how_many, d, l, start_from)
Download all FashionMNIST files to directory unless they are there. def _get_fashion_mnist(directory): """Download all FashionMNIST files to directory unless they are there.""" # Fashion mnist files have the same names as MNIST. # We must choose a separate name (by adding 'fashion-' prefix) in the tmp_dir. for filename in [ _MNIST_TRAIN_DATA_FILENAME, _MNIST_TRAIN_LABELS_FILENAME, _MNIST_TEST_DATA_FILENAME, _MNIST_TEST_LABELS_FILENAME ]: generator_utils.maybe_download(directory, _FASHION_MNIST_LOCAL_FILE_PREFIX + filename, _FASHION_MNIST_URL + filename)
Image generator for FashionMNIST. Args: tmp_dir: path to temporary storage directory. training: a Boolean; if true, we use the train set, otherwise the test set. how_many: how many images and labels to generate. start_from: from which image to start. Returns: An instance of image_generator that produces MNIST images. def fashion_mnist_generator(tmp_dir, training, how_many, start_from=0): """Image generator for FashionMNIST. Args: tmp_dir: path to temporary storage directory. training: a Boolean; if true, we use the train set, otherwise the test set. how_many: how many images and labels to generate. start_from: from which image to start. Returns: An instance of image_generator that produces MNIST images. """ _get_fashion_mnist(tmp_dir) d = _FASHION_MNIST_LOCAL_FILE_PREFIX + ( _MNIST_TRAIN_DATA_FILENAME if training else _MNIST_TEST_DATA_FILENAME) l = _FASHION_MNIST_LOCAL_FILE_PREFIX + ( _MNIST_TRAIN_LABELS_FILENAME if training else _MNIST_TEST_LABELS_FILENAME) return mnist_common_generator(tmp_dir, training, how_many, d, l, start_from)
Generates synthetic timeseries using input parameters. Each generated timeseries has timeseries_length data points. Parameters for each timeseries are specified by timeseries_params. Args: timeseries_length: Number of data points to generate for each timeseries. timeseries_params: Parameters used to generate the timeseries. The following parameters need to be specified for each timeseries: m = Slope of the timeseries used to compute the timeseries trend. b = y-intercept of the timeseries used to compute the timeseries trend. A = Timeseries amplitude used to compute timeseries period. freqcoeff = Frequency coefficient used to compute timeseries period. rndA = Random amplitude used to inject noise into the timeseries. fn = Base timeseries function (np.cos or np.sin). Example params for two timeseries. [{"m": 0.006, "b": 300.0, "A":50.0, "freqcoeff":1500.0, "rndA":15.0, "fn": np.sin}, {"m": 0.000, "b": 500.0, "A":35.0, "freqcoeff":3500.0, "rndA":25.0, "fn": np.cos}] Returns: Multi-timeseries (list of list). def generate_data(timeseries_length, timeseries_params): """Generates synthetic timeseries using input parameters. Each generated timeseries has timeseries_length data points. Parameters for each timeseries are specified by timeseries_params. Args: timeseries_length: Number of data points to generate for each timeseries. timeseries_params: Parameters used to generate the timeseries. The following parameters need to be specified for each timeseries: m = Slope of the timeseries used to compute the timeseries trend. b = y-intercept of the timeseries used to compute the timeseries trend. A = Timeseries amplitude used to compute timeseries period. freqcoeff = Frequency coefficient used to compute timeseries period. rndA = Random amplitude used to inject noise into the timeseries. fn = Base timeseries function (np.cos or np.sin). Example params for two timeseries. [{"m": 0.006, "b": 300.0, "A":50.0, "freqcoeff":1500.0, "rndA":15.0, "fn": np.sin}, {"m": 0.000, "b": 500.0, "A":35.0, "freqcoeff":3500.0, "rndA":25.0, "fn": np.cos}] Returns: Multi-timeseries (list of list). """ x = range(timeseries_length) multi_timeseries = [] for p in timeseries_params: # Trend y1 = [p["m"] * i + p["b"] for i in x] # Period y2 = [p["A"] * p["fn"](i / p["freqcoeff"]) for i in x] # Noise y3 = np.random.normal(0, p["rndA"], timeseries_length).tolist() # Sum of Trend, Period and Noise. Replace negative values with zero. y = [max(a + b + c, 0) for a, b, c in zip(y1, y2, y3)] multi_timeseries.append(y) return multi_timeseries
Basic 2-frame conv model with stochastic tower. def next_frame_basic_stochastic(): """Basic 2-frame conv model with stochastic tower.""" hparams = basic_deterministic_params.next_frame_basic_deterministic() hparams.stochastic_model = True hparams.add_hparam("latent_channels", 1) hparams.add_hparam("latent_std_min", -5.0) hparams.add_hparam("num_iterations_1st_stage", 15000) hparams.add_hparam("num_iterations_2nd_stage", 15000) hparams.add_hparam("latent_loss_multiplier", 1e-3) hparams.add_hparam("latent_loss_multiplier_dynamic", False) hparams.add_hparam("latent_loss_multiplier_alpha", 1e-5) hparams.add_hparam("latent_loss_multiplier_epsilon", 1.0) hparams.add_hparam("latent_loss_multiplier_schedule", "constant") hparams.add_hparam("latent_num_frames", 0) # 0 means use all frames. hparams.add_hparam("anneal_end", 50000) hparams.add_hparam("information_capacity", 0.0) return hparams
Basic 2-frame conv model with stochastic tower. def next_frame_sampling_stochastic(): """Basic 2-frame conv model with stochastic tower.""" hparams = basic_deterministic_params.next_frame_sampling() hparams.stochastic_model = True hparams.add_hparam("latent_channels", 1) hparams.add_hparam("latent_std_min", -5.0) hparams.add_hparam("num_iterations_1st_stage", 15000) hparams.add_hparam("num_iterations_2nd_stage", 15000) hparams.add_hparam("latent_loss_multiplier", 1e-3) hparams.add_hparam("latent_loss_multiplier_dynamic", False) hparams.add_hparam("latent_loss_multiplier_alpha", 1e-5) hparams.add_hparam("latent_loss_multiplier_epsilon", 1.0) hparams.add_hparam("latent_loss_multiplier_schedule", "constant") hparams.add_hparam("latent_num_frames", 0) # 0 means use all frames. hparams.add_hparam("anneal_end", 40000) hparams.add_hparam("information_capacity", 0.0) return hparams
Basic 2-frame conv model with stochastic discrete latent. def next_frame_basic_stochastic_discrete(): """Basic 2-frame conv model with stochastic discrete latent.""" hparams = basic_deterministic_params.next_frame_sampling() hparams.batch_size = 4 hparams.video_num_target_frames = 6 hparams.scheduled_sampling_mode = "prob_inverse_lin" hparams.scheduled_sampling_decay_steps = 40000 hparams.scheduled_sampling_max_prob = 1.0 hparams.dropout = 0.15 hparams.filter_double_steps = 3 hparams.hidden_size = 96 hparams.learning_rate_constant = 0.002 hparams.learning_rate_warmup_steps = 2000 hparams.learning_rate_schedule = "linear_warmup * constant" hparams.concat_internal_states = True hparams.video_modality_loss_cutoff = 0.03 hparams.add_hparam("bottleneck_bits", 128) hparams.add_hparam("bottleneck_noise", 0.1) hparams.add_hparam("discretize_warmup_steps", 40000) hparams.add_hparam("latent_rnn_warmup_steps", 40000) hparams.add_hparam("latent_rnn_max_sampling", 0.5) hparams.add_hparam("latent_use_max_probability", 0.8) hparams.add_hparam("full_latent_tower", False) hparams.add_hparam("latent_predictor_state_size", 128) hparams.add_hparam("latent_predictor_temperature", 1.0) hparams.add_hparam("complex_addn", True) hparams.add_hparam("recurrent_state_size", 64) return hparams
Next frame stochastic discrete tuning grid. def next_frame_stochastic_discrete_range(rhp): """Next frame stochastic discrete tuning grid.""" rhp.set_float("learning_rate_constant", 0.001, 0.01) rhp.set_float("dropout", 0.2, 0.6) rhp.set_int("filter_double_steps", 3, 5) rhp.set_discrete("hidden_size", [64, 96, 128]) rhp.set_discrete("bottleneck_bits", [32, 64, 128, 256]) rhp.set_discrete("video_num_target_frames", [4]) rhp.set_float("bottleneck_noise", 0.0, 0.2)
Map the function f to the nested structure x (dicts, tuples, lists). def nested_map(x, f): """Map the function f to the nested structure x (dicts, tuples, lists).""" if isinstance(x, list): return [nested_map(y, f) for y in x] if isinstance(x, tuple): return tuple([nested_map(y, f) for y in x]) if isinstance(x, dict): return {k: nested_map(x[k], f) for k in x} return f(x)
Get a structure of shapes for a structure of nested arrays. def shapes(x): """Get a structure of shapes for a structure of nested arrays.""" def shape(x): try: return x.shape except Exception: # pylint: disable=broad-except return [] return nested_map(x, shape)
Get a structure of sizes for a structure of nested arrays. def sizes(x): """Get a structure of sizes for a structure of nested arrays.""" def size(x): try: return x.size except Exception: # pylint: disable=broad-except return 0 return nested_map(x, size)
Find the frame with the caller on the stack. def _find_frame(stack, start=0): """Find the frame with the caller on the stack.""" # We want to find the first place where the layer was called # that is *not* an __init__ function of an inheriting layer. frame = inspect.getframeinfo(stack[start][0]) # If we are in an init, move on. if frame.function == '__init__': return _find_frame(stack, start + 1) return frame
Shorten file path in error lines for more readable tracebacks. def _shorten_file_path(line): """Shorten file path in error lines for more readable tracebacks.""" start = line.lower().find('file') if start < 0: return line first_quote = line.find('"', start) if first_quote < 0: return line second_quote = line.find('"', first_quote + 1) if second_quote < 0: return line path = line[first_quote + 1:second_quote] new_path = '/'.join(path.split('/')[-3:]) return line[:first_quote] + '[...]/' + new_path + line[second_quote + 1:]
Cleaned-up form of traceback. def _short_traceback(skip=3): """Cleaned-up form of traceback.""" counter, res = 0, [] # Skipping 3 lines by default: the top (useless) and self-call. lines = traceback.format_exc().splitlines()[skip:] for l in lines: res.append(_shorten_file_path(l)) if counter % 2 == 1: res.append('') counter += 1 # If we see a LayerError, the traceback has already been processed. if l.startswith('LayerError'): # Skip 4 back except last as these are internal base-layer calls. res = res[:-4] + [res[-1]] res += lines[counter:] break return '\n'.join(res)
Create a layer class from a function. def layer(output_shape=None, new_parameters=None): """Create a layer class from a function.""" def layer_decorator(call): """Decorating the call function.""" def output_shape_fun(self, input_shape): if output_shape is None: return input_shape kwargs = self._init_kwargs # pylint: disable=protected-access return output_shape(input_shape, **kwargs) def new_parameters_fun(self, input_shape, rng): if new_parameters is None: return () kwargs = self._init_kwargs # pylint: disable=protected-access return new_parameters(input_shape, rng, **kwargs) def call_fun(self, x, params=(), **kwargs): """The call function of the created class, derived from call.""" # Merge on-call kwargs with class-kwargs. call_kwargs = kwargs.copy() call_kwargs.update(self._init_kwargs) # pylint: disable=protected-access # Call with the merged kwargs. return call(x, params=params, **call_kwargs) # Set doc for python help. call_fun.__doc__ = call.__doc__ if output_shape is None: output_shape_fun.__doc__ = output_shape.__doc__ if new_parameters is None: new_parameters_fun.__doc__ = new_parameters.__doc__ # Create the class. cls = type(call.__name__, (Layer,), {'call': call_fun, 'output_shape': output_shape_fun, 'new_parameters': new_parameters_fun}) return cls return layer_decorator
Initialize the layer given an input shape and rng. Returns new_parameters(input_shape, rng) on the first call and () on any subsequent call, as the layer is already initialized. This is used for networks that share parameters, so the layer only produces them once. Note that all arguments and return values can be tuples or dictionaries or arbitraty nested structures composed of tuples and dictionaries. Args: input_shape: a tuple representing the shape of the input. rng: random number generator. Returns: Newly created parameters on the first call and () on all subsequent calls. def initialize(self, input_shape, rng): """Initialize the layer given an input shape and rng. Returns new_parameters(input_shape, rng) on the first call and () on any subsequent call, as the layer is already initialized. This is used for networks that share parameters, so the layer only produces them once. Note that all arguments and return values can be tuples or dictionaries or arbitraty nested structures composed of tuples and dictionaries. Args: input_shape: a tuple representing the shape of the input. rng: random number generator. Returns: Newly created parameters on the first call and () on all subsequent calls. """ try: # Re-using this layer, no new parameters. if not self._first_init: return () # First call of this layer, create parameters. self._first_init = False self._params = self.new_parameters(input_shape, rng) return self._params except Exception: name, trace = self.__class__.__name__, _short_traceback() raise LayerError(name, 'initialize', self._caller, input_shape, trace)
Returns dict<str ref_url, str ref_content>. def _references_content(ref_files): """Returns dict<str ref_url, str ref_content>.""" example_spec = { "url": tf.FixedLenFeature([], tf.string), "content": tf.FixedLenFeature([], tf.string), } data = {} for ex in generator_utils.tfrecord_iterator( ref_files, gzipped=True, example_spec=example_spec): data[ex["url"]] = text_encoder.to_unicode(ex["content"]) return data
Urls for chunk: dict<str wiki_url, list<str> ref_urls>. def _wiki_urls_for_shard(shard_id, urls_dir=None): """Urls for chunk: dict<str wiki_url, list<str> ref_urls>.""" urls_dir = urls_dir or WIKI_URLS_DIR urls_filepath = os.path.join(urls_dir, WIKI_URLS_FILE % shard_id) with tf.gfile.GFile(urls_filepath) as f: return json.loads(f.read())
Generates WikipediaArticles from GCS that are part of shard shard_id. def _wiki_articles(shard_id, wikis_dir=None): """Generates WikipediaArticles from GCS that are part of shard shard_id.""" if not wikis_dir: wikis_dir = WIKI_CONTENT_DIR with tf.Graph().as_default(): dataset = tf.data.TFRecordDataset( cc_utils.readahead( os.path.join(wikis_dir, WIKI_CONTENT_FILE % shard_id)), buffer_size=16 * 1000 * 1000) def _parse_example(ex_ser): """Parse serialized Example containing Wikipedia article content.""" features = { "url": tf.VarLenFeature(tf.string), "title": tf.VarLenFeature(tf.string), "section_titles": tf.VarLenFeature(tf.string), "section_texts": tf.VarLenFeature(tf.string), } ex = tf.parse_single_example(ex_ser, features) for k in ex.keys(): ex[k] = ex[k].values ex["url"] = ex["url"][0] ex["title"] = ex["title"][0] return ex dataset = dataset.map(_parse_example, num_parallel_calls=32) dataset = dataset.prefetch(100) record_it = dataset.make_one_shot_iterator().get_next() with tf.Session() as sess: while True: try: ex = sess.run(record_it) except tf.errors.OutOfRangeError: break sections = [ WikipediaSection(title=text_encoder.to_unicode(title), text=text_encoder.to_unicode(text)) for title, text in zip(ex["section_titles"], ex["section_texts"]) ] yield WikipediaArticle( url=text_encoder.to_unicode(ex["url"]), title=text_encoder.to_unicode(ex["title"]), sections=sections)
Rank and return reference paragraphs by tf-idf score on title tokens. def rank_reference_paragraphs(wiki_title, references_content, normalize=True): """Rank and return reference paragraphs by tf-idf score on title tokens.""" normalized_title = _normalize_text(wiki_title) title_tokens = _tokens_to_score( set(tokenizer.encode(text_encoder.native_to_unicode(normalized_title)))) ref_paragraph_info = [] doc_counts = collections.defaultdict(int) for ref in references_content: for paragraph in ref.split("\n"): normalized_paragraph = _normalize_text(paragraph) if cc_utils.filter_paragraph(normalized_paragraph): # Skip paragraph continue counts = _token_counts(normalized_paragraph, title_tokens) for token in title_tokens: if counts[token]: doc_counts[token] += 1 content = normalized_paragraph if normalize else paragraph info = {"content": content, "counts": counts} ref_paragraph_info.append(info) for info in ref_paragraph_info: score = 0. for token in title_tokens: term_frequency = info["counts"][token] inv_doc_frequency = ( float(len(ref_paragraph_info)) / max(doc_counts[token], 1)) score += term_frequency * math.log(inv_doc_frequency) info["score"] = score ref_paragraph_info.sort(key=lambda el: el["score"], reverse=True) return [info["content"] for info in ref_paragraph_info]
Produce examples from shard_ids to out_filepaths. def produce_examples(shard_ids, wikis_dir, refs_dir, urls_dir, vocab_path, out_filepaths): """Produce examples from shard_ids to out_filepaths.""" # * Join the Wikipedia articles with their references # * Run Tf-idf to sort reference paragraphs # * Encode the Wikipedia and reference text with the vocabulary # * Write out TFRecords of tensorflow.Example tf.logging.info("Processing %d input shards into %d output files.", len(shard_ids), len(out_filepaths)) vocab = text_encoder.SubwordTextEncoder(vocab_path) eot_ids = vocab.encode(EOT) def example_generator(): """Generate Example dicts.""" stats = dict(total_original_wikis=0, total_original_refs=0, total_found_refs=0, ref_lengths=[], wiki_original_refs=[], wiki_found_refs=[], wikis_skipped_no_refs=0, wikis_skipped_short_lead=0, num_wikis_written=0) ref_files_by_shard = _references_files_by_shard(refs_dir) for shard_id in shard_ids: tf.logging.info("Processing shard %d", shard_id) wiki_urls = _wiki_urls_for_shard(shard_id, urls_dir) tf.logging.info("Loaded wiki URLs for shard") refs_content = _references_content(ref_files_by_shard[shard_id]) tf.logging.info("Loaded reference content for shard") for i, wiki in enumerate(_wiki_articles(shard_id, wikis_dir)): if not i % 1000: tf.logging.info("Processing wiki index %d for shard %d", i, shard_id) stats["total_original_wikis"] += 1 # Get reference content wiki_ref_content = [] ref_urls = wiki_urls[wiki.url]["refs"] stats["total_original_refs"] += len(ref_urls) stats_wiki_original_refs = len(ref_urls) stats_wiki_found_refs = 0 for ref_url in ref_urls: ref_content = refs_content.get(ref_url) if not ref_content: continue stats["total_found_refs"] += 1 stats["ref_lengths"].append(len(ref_content)) stats_wiki_found_refs += 1 wiki_ref_content.append(ref_content) stats["wiki_original_refs"].append(stats_wiki_original_refs) stats["wiki_found_refs"].append(stats_wiki_found_refs) if not wiki_ref_content or len(wiki_ref_content) < _MIN_REFS: # No/few refs were found stats["wikis_skipped_no_refs"] += 1 continue # Rank reference paragraphs with TFIDF wiki_title = _normalize_text(wiki.title) ranked_paragraphs = rank_reference_paragraphs(wiki_title, wiki_ref_content) # Construct inputs from Wiki title and references inputs = [] inputs.extend(vocab.encode(wiki_title)) inputs.extend(eot_ids) for paragraph in ranked_paragraphs: if len(inputs) >= 1e6: break paragraph += " " inputs.extend(vocab.encode(paragraph)) # Construct targets from article sections targets, section_boundaries = _encode_wiki_sections( wiki.sections, vocab) # Skip if lead section is too short if (not section_boundaries or section_boundaries[0] < _MIN_LEADSECTION_TOKENS): stats["wikis_skipped_short_lead"] += 1 continue inputs.append(text_encoder.EOS_ID) targets.append(text_encoder.EOS_ID) stats["num_wikis_written"] += 1 yield { "inputs": inputs, "targets": targets, "section_boundaries": section_boundaries, } tf.logging.info("Total: %d, Skipped: %d", stats["num_wikis_written"], stats["total_original_wikis"] - stats["num_wikis_written"]) tf.logging.info("Total refs: %d, Skipped refs: %d", stats["total_found_refs"], stats["total_original_refs"] - stats["total_found_refs"]) stats_fname = os.path.join(os.path.split(out_filepaths[0])[0], "stats.%d.json" % shard_ids[0]) with tf.gfile.Open(stats_fname, "w") as f: f.write(json.dumps(stats)) generator_utils.generate_files(example_generator(), out_filepaths)
Encodes sections with vocab. Returns ids and section boundaries. def _encode_wiki_sections(sections, vocab): """Encodes sections with vocab. Returns ids and section boundaries.""" ids = [] section_boundaries = [] for i, section in enumerate(sections): if i > 0: # Skip including article title ids.extend(vocab.encode(_format_title(_normalize_text(section.title)))) ids.extend(vocab.encode(_normalize_text(section.text))) section_boundaries.append(len(ids)) return ids, section_boundaries
Extract references from WET files into sharded output files. def extract_references_from_wets(wet_files, metadata_dir, out_dir, tmp_dir=None): """Extract references from WET files into sharded output files.""" # Setup output files shard_files = make_ref_shard_files(out_dir) num_refs = 0 for i, wet_file in enumerate(wet_files): num_refs_in_wet = 0 tf.logging.info("Processing file %d", i) # Read metadata file metadata_fname = os.path.join( metadata_dir, os.path.basename(wet_file)) + cc_utils.METADTA_SUFFIX with tf.gfile.Open(cc_utils.readahead(metadata_fname)) as f: wet_metadata = json.loads(f.read()) if not wet_metadata: # No references in this WET file continue if wet_file.startswith("http"): # download if not tmp_dir: tmp_dir = tempfile.gettempdir() record_gen = cc_utils.wet_records_from_url(wet_file, tmp_dir) else: # local record_gen = cc_utils.wet_records_from_file_obj( cc_utils.gzip_memfile(wet_file), take_ownership=True) for wet_record in record_gen: shard_ids = wet_metadata.get(wet_record.url) if not shard_ids: # URL not in dataset continue # Serialize and write out ex = _make_example_from_record(wet_record) ex_str = ex.SerializeToString() for shard_id in shard_ids: shard_files[shard_id].write(ex_str) num_refs += 1 num_refs_in_wet += 1 tf.logging.info("Wrote out %d references for this WET", num_refs_in_wet) tf.logging.info("Wrote out %d references total", num_refs) # Cleanup for shard_file in shard_files: shard_file.close()
Extract pages from an xml dump. Args: dump: a unicode string Returns: a list of unicode strings def _dump_to_pages(dump): """Extract pages from an xml dump. Args: dump: a unicode string Returns: a list of unicode strings """ pos = 0 ret = [] start_tag = u"<page>\n" end_tag = u"</page>\n" while True: start_pos = dump.find(start_tag, pos) if start_pos == -1: break start_pos += len(start_tag) end_pos = dump.find(end_tag, start_pos) if end_pos == -1: break ret.append(dump[start_pos:end_pos]) pos = end_pos + len(end_tag) return ret