backup / common /io_utils.py
MatchLab's picture
Upload folder using huggingface_hub
c94c8c9 verified
import csv
import pickle
import json
import cv2
import yaml
import numpy as np
from pathlib import Path
import torch
import open3d
from plyfile import PlyData
def make_dir(dir_path):
if not Path(dir_path).exists():
Path(dir_path).mkdir(parents=True, exist_ok=True)
def load_imgs(img_paths, option=cv2.IMREAD_COLOR):
imgs = [cv2.imread(img_path, option) for img_path in img_paths]
return imgs
def load_pickle(filename):
with Path(filename).open("rb") as f:
return pickle.load(f)
def save_pickle(data, filename):
with Path(filename).open("wb") as f:
pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL)
def load_json(filename):
with Path(filename).open("rb") as f:
return json.load(f)
def save_json(data, filename, save_pretty=True, sort_keys=False):
with Path(filename).open("w") as f:
if save_pretty:
f.write(json.dumps(data, indent=4, sort_keys=sort_keys))
else:
json.dump(data, f)
def load_jsonl(filename):
with Path(filename).open("r") as f:
return [json.loads(l.strip("\n")) for l in f.readlines()]
def save_jsonl(data, filename):
with Path(filename).open("w") as f:
f.write("\n".join([json.dumps(e) for e in data]))
def load_yaml(filename):
with Path(filename).open("r") as f:
return yaml.load(f, Loader=yaml.SafeLoader)
def save_yaml(data, filename):
with Path(filename).open("w") as f:
yaml.dump(data, f, default_flow_style=False)
def load_csv(filename, delimiter=","):
idx2key = None
contents = {}
with Path(filename).open("r") as f:
reader = csv.reader(f, delimiter=delimiter)
for l_idx, row in reader:
if l_idx == 0:
idx2key = row
for k_idx, key in enumerate(idx2key):
contents[key] = []
else:
for c_idx, col in enumerate(row):
contents[idx2key[c_idx]].append(col)
return contents, idx2key
def save_csv(data, filename, cols=None, delimiter=","):
with Path(filename).open("w") as f:
writer = csv.writer(f, delimiter=delimiter)
num_entries = len(data[list(data.keys())[0]])
assert cols is not None, "Must have column names for dumping csv files."
writer.writerow(cols)
for l_idx in range(num_entries):
row = [data[key][l_idx] for key in cols]
writer.writerow(row)
def load_numpy(filename):
return np.load(filename, allow_pickle=True)
def save_numpy(data, filename):
np.save(filename, data, allow_pickle=True)
def load_tensor(filename):
return torch.load(filename)
def save_tensor(data, filename):
torch.save(data, filename)
def load_ply(filepath):
with open(filepath, "rb") as f:
plydata = PlyData.read(f)
data = plydata.elements[0].data
coords = np.array([data["x"], data["y"], data["z"]], dtype=np.float32).T
feats = None
labels = None
if ({"red", "green", "blue"} - set(data.dtype.names)) == set():
feats = np.array([data["red"], data["green"], data["blue"]], dtype=np.uint8).T
if "label" in data.dtype.names:
labels = np.array(data["label"], dtype=np.uint32)
return coords, feats, labels
def load_ply_with_normals(filepath):
mesh = open3d.io.read_triangle_mesh(str(filepath))
if not mesh.has_vertex_normals():
mesh.compute_vertex_normals()
vertices = np.asarray(mesh.vertices)
normals = np.asarray(mesh.vertex_normals)
coords, feats, labels = load_ply(filepath)
assert np.allclose(coords, vertices), "different coordinates"
feats = np.hstack((feats, normals))
return coords, feats, labels