|
|
from omegaconf import OmegaConf |
|
|
from torch.utils.data import DataLoader, default_collate, ConcatDataset |
|
|
from fvcore.common.registry import Registry |
|
|
|
|
|
from .datasets.dataset_wrapper import DATASETWRAPPER_REGISTRY |
|
|
|
|
|
DATASET_REGISTRY = Registry("dataset") |
|
|
DATASET_REGISTRY.__doc__ = """ |
|
|
Registry for datasets, which takes a list of dataset names and returns a dataset object. |
|
|
Currently it performs similar as registering dataset loading functions, but remains in a |
|
|
form of object class for future purposes. |
|
|
""" |
|
|
|
|
|
def get_dataset(cfg, split): |
|
|
assert cfg.data.get(split), f"No valid dataset name in {split}." |
|
|
dataset_list = [] |
|
|
print(split, ': ', ', '.join(cfg.data.get(split))) |
|
|
for dataset_name in cfg.data.get(split): |
|
|
_dataset = DATASET_REGISTRY.get(dataset_name)(cfg, split) |
|
|
assert len(_dataset), f"Dataset '{dataset_name}' is empty!" |
|
|
wrapper = cfg.data_wrapper.get(split, cfg.data_wrapper) if not isinstance(cfg.data_wrapper, str) else cfg.data_wrapper |
|
|
_dataset = DATASETWRAPPER_REGISTRY.get(wrapper)(cfg, _dataset, split=split) |
|
|
|
|
|
|
|
|
if cfg.data.get('use_voxel', None): |
|
|
_dataset = DATASETWRAPPER_REGISTRY.get('VoxelDatasetWrapper')(cfg, _dataset) |
|
|
dataset_list.append(_dataset) |
|
|
|
|
|
print('='*50) |
|
|
print('Dataset\t\t\tSize') |
|
|
total = sum([len(dataset) for dataset in dataset_list]) |
|
|
for dataset_name, dataset in zip(cfg.data.get(split), dataset_list): |
|
|
print(f'{dataset_name:<20} {len(dataset):>6} ({len(dataset) / total * 100:.1f}%)') |
|
|
print(f'Total\t\t\t{total}') |
|
|
print('='*50) |
|
|
if split in ['warmup', 'pretrain', 'train']: |
|
|
dataset_list = ConcatDataset(dataset_list) |
|
|
return dataset_list |
|
|
|
|
|
|
|
|
def build_dataloader(cfg, split='train'): |
|
|
"""_summary_ |
|
|
Unittest: |
|
|
dataloader_train = build_dataloader(default_cfg, split='train') |
|
|
for _item in dataloader_train: |
|
|
print(_item.keys()) |
|
|
|
|
|
Args: |
|
|
cfg (_type_): _description_ |
|
|
split (str, optional): _description_. Defaults to 'train'. |
|
|
|
|
|
Returns: |
|
|
_type_: _description_ |
|
|
""" |
|
|
|
|
|
if split in ['warmup','pretrain']: |
|
|
dataset= get_dataset(cfg, split) |
|
|
collate_fn = getattr(dataset.datasets[0], 'collate_fn', default_collate) |
|
|
return DataLoader(dataset, |
|
|
batch_size=cfg.dataloader.batchsize, |
|
|
num_workers=cfg.dataloader.num_workers, |
|
|
collate_fn = collate_fn, |
|
|
pin_memory=True, |
|
|
persistent_workers = False, |
|
|
shuffle=True, |
|
|
drop_last=True) |
|
|
else: |
|
|
loader_list = [] |
|
|
collate_fn = default_collate |
|
|
if split == 'train': |
|
|
dataset = get_dataset(cfg, split) |
|
|
return DataLoader(dataset, |
|
|
batch_size=cfg.dataloader.get('batchsize_eval', cfg.dataloader.batchsize), |
|
|
num_workers=8, |
|
|
collate_fn = collate_fn, |
|
|
pin_memory=True, |
|
|
persistent_workers = True, |
|
|
drop_last=True, |
|
|
prefetch_factor=4, |
|
|
shuffle=True) |
|
|
else: |
|
|
for dataset in get_dataset(cfg, split): |
|
|
loader_list.append( |
|
|
DataLoader(dataset, |
|
|
batch_size=cfg.dataloader.get('batchsize_eval', cfg.dataloader.batchsize), |
|
|
num_workers=8, |
|
|
collate_fn = collate_fn, |
|
|
pin_memory=True, |
|
|
shuffle=False, |
|
|
prefetch_factor=4, |
|
|
persistent_workers = True)) |
|
|
|
|
|
|
|
|
if len(loader_list) == 1: |
|
|
return loader_list[0] |
|
|
else: |
|
|
return loader_list |
|
|
|
|
|
if __name__ == '__main__': |
|
|
pass |
|
|
|