|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
import math |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def center_point_cloud(points: torch.Tensor): |
|
|
""" |
|
|
Center a point cloud by subtracting its centroid. |
|
|
|
|
|
Args: |
|
|
points: |
|
|
(N, 3) or (B, N, 3) tensor |
|
|
|
|
|
Returns: |
|
|
centered_points: |
|
|
same shape as input |
|
|
center: |
|
|
(1, 3) if input was (N, 3) |
|
|
(B, 1, 3) if input was (B, N, 3) |
|
|
""" |
|
|
assert points.dim() in (2, 3) and points.size(-1) == 3, \ |
|
|
"Expected shape (N,3) or (B,N,3)" |
|
|
|
|
|
if points.dim() == 2: |
|
|
|
|
|
center = points.mean(dim=0, keepdim=True) |
|
|
centered = points - center |
|
|
else: |
|
|
|
|
|
center = points.mean(dim=1, keepdim=True) |
|
|
centered = points - center |
|
|
|
|
|
return centered, center |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def random_rotation_matrix( |
|
|
batch_size: int | None = None, |
|
|
device=None, |
|
|
dtype=torch.float32, |
|
|
): |
|
|
""" |
|
|
Generate random 3D rotation matrix/matrices. |
|
|
|
|
|
If batch_size is None: |
|
|
returns (3, 3) rotation matrix. |
|
|
Else: |
|
|
returns (B, 3, 3) rotation matrices. |
|
|
|
|
|
Uniform sampling over SO(3) using independent yaw-pitch-roll. |
|
|
(Not perfectly uniform on SO(3) but good enough for augmentation.) |
|
|
""" |
|
|
if device is None: |
|
|
device = torch.device("cpu") |
|
|
|
|
|
if batch_size is None: |
|
|
angles = torch.rand(3, device=device, dtype=dtype) * 2 * math.pi |
|
|
cx, cy, cz = torch.cos(angles) |
|
|
sx, sy, sz = torch.sin(angles) |
|
|
|
|
|
rot_x = torch.tensor([ |
|
|
[1, 0, 0], |
|
|
[0, cx, -sx], |
|
|
[0, sx, cx], |
|
|
], device=device, dtype=dtype) |
|
|
|
|
|
rot_y = torch.tensor([ |
|
|
[ cy, 0, sy], |
|
|
[ 0, 1, 0], |
|
|
[-sy, 0, cy], |
|
|
], device=device, dtype=dtype) |
|
|
|
|
|
rot_z = torch.tensor([ |
|
|
[cz, -sz, 0], |
|
|
[sz, cz, 0], |
|
|
[ 0, 0, 1], |
|
|
], device=device, dtype=dtype) |
|
|
|
|
|
R = rot_z @ rot_y @ rot_x |
|
|
return R |
|
|
|
|
|
else: |
|
|
|
|
|
angles = torch.rand(batch_size, 3, device=device, dtype=dtype) * 2 * math.pi |
|
|
cx, cy, cz = torch.cos(angles[:, 0]), torch.cos(angles[:, 1]), torch.cos(angles[:, 2]) |
|
|
sx, sy, sz = torch.sin(angles[:, 0]), torch.sin(angles[:, 1]), torch.sin(angles[:, 2]) |
|
|
|
|
|
|
|
|
R = torch.zeros(batch_size, 3, 3, device=device, dtype=dtype) |
|
|
|
|
|
|
|
|
R_x = torch.zeros_like(R) |
|
|
R_x[:, 0, 0] = 1 |
|
|
R_x[:, 1, 1] = cx |
|
|
R_x[:, 1, 2] = -sx |
|
|
R_x[:, 2, 1] = sx |
|
|
R_x[:, 2, 2] = cx |
|
|
|
|
|
|
|
|
R_y = torch.zeros_like(R) |
|
|
R_y[:, 0, 0] = cy |
|
|
R_y[:, 0, 2] = sy |
|
|
R_y[:, 1, 1] = 1 |
|
|
R_y[:, 2, 0] = -sy |
|
|
R_y[:, 2, 2] = cy |
|
|
|
|
|
|
|
|
R_z = torch.zeros_like(R) |
|
|
R_z[:, 0, 0] = cz |
|
|
R_z[:, 0, 1] = -sz |
|
|
R_z[:, 1, 0] = sz |
|
|
R_z[:, 1, 1] = cz |
|
|
R_z[:, 2, 2] = 1 |
|
|
|
|
|
|
|
|
|
|
|
R = torch.bmm(R_z, torch.bmm(R_y, R_x)) |
|
|
return R |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rotate_point_cloud(points: torch.Tensor, R: torch.Tensor = None): |
|
|
""" |
|
|
Rotate a point cloud with optional rotation matrix. |
|
|
|
|
|
Args: |
|
|
points: |
|
|
(N,3) or (B,N,3) |
|
|
R: |
|
|
If points is (N,3): |
|
|
None or (3,3) |
|
|
If points is (B,N,3): |
|
|
None, (3,3) shared, or (B,3,3) per-cloud. |
|
|
|
|
|
Returns: |
|
|
rotated_points: same shape as points |
|
|
R: (3,3) or (B,3,3) rotation used |
|
|
""" |
|
|
assert points.dim() in (2, 3) and points.size(-1) == 3, \ |
|
|
"Expected shape (N,3) or (B,N,3)" |
|
|
|
|
|
device, dtype = points.device, points.dtype |
|
|
|
|
|
if points.dim() == 2: |
|
|
|
|
|
if R is None: |
|
|
R = random_rotation_matrix(device=device, dtype=dtype) |
|
|
assert R.shape == (3, 3), "R must be (3,3) for single cloud" |
|
|
rotated = points @ R.T |
|
|
return rotated, R |
|
|
|
|
|
else: |
|
|
|
|
|
B, N, _ = points.shape |
|
|
|
|
|
if R is None: |
|
|
R = random_rotation_matrix(batch_size=B, device=device, dtype=dtype) |
|
|
elif R.dim() == 2: |
|
|
|
|
|
assert R.shape == (3, 3), "R must be (3,3) or (B,3,3)" |
|
|
R = R.unsqueeze(0).expand(B, -1, -1) |
|
|
else: |
|
|
assert R.shape == (B, 3, 3), "R must be (3,3) or (B,3,3)" |
|
|
|
|
|
|
|
|
rotated = torch.einsum("bnc,bfc->bnf", points, R.transpose(1, 2)) |
|
|
return rotated, R |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def rotate_point_cloud_z(points: torch.Tensor, angle=None): |
|
|
""" |
|
|
Rotate point cloud around z-axis only. |
|
|
|
|
|
Args: |
|
|
points: |
|
|
(N,3) or (B,N,3) |
|
|
angle: |
|
|
If points is (N,3): float or None (radians). |
|
|
- None: sample random in [0, 2π). |
|
|
If points is (B,N,3): tensor of shape (B,) or None. |
|
|
- None: random angle per cloud in [0, 2π). |
|
|
|
|
|
Returns: |
|
|
rotated_points: same shape as points |
|
|
Rz: |
|
|
(3,3) for single cloud |
|
|
(B,3,3) for batched |
|
|
""" |
|
|
assert points.dim() in (2, 3) and points.size(-1) == 3, \ |
|
|
"Expected shape (N,3) or (B,N,3)" |
|
|
|
|
|
device, dtype = points.device, points.dtype |
|
|
|
|
|
if points.dim() == 2: |
|
|
|
|
|
if angle is None: |
|
|
angle = torch.rand(1, device=device, dtype=dtype).item() * 2 * math.pi |
|
|
c, s = math.cos(angle), math.sin(angle) |
|
|
Rz = torch.tensor([ |
|
|
[c, -s, 0], |
|
|
[s, c, 0], |
|
|
[0, 0, 1], |
|
|
], device=device, dtype=dtype) |
|
|
rotated = points @ Rz.T |
|
|
return rotated, Rz |
|
|
|
|
|
else: |
|
|
|
|
|
B, N, _ = points.shape |
|
|
if angle is None: |
|
|
angle = torch.rand(B, device=device, dtype=dtype) * 2 * math.pi |
|
|
elif not torch.is_tensor(angle): |
|
|
|
|
|
angle = torch.full((B,), float(angle), device=device, dtype=dtype) |
|
|
|
|
|
c = torch.cos(angle) |
|
|
s = torch.sin(angle) |
|
|
|
|
|
Rz = torch.zeros(B, 3, 3, device=device, dtype=dtype) |
|
|
Rz[:, 0, 0] = c |
|
|
Rz[:, 0, 1] = -s |
|
|
Rz[:, 1, 0] = s |
|
|
Rz[:, 1, 1] = c |
|
|
Rz[:, 2, 2] = 1 |
|
|
|
|
|
rotated = torch.einsum("bnc,bfc->bnf", points, Rz.transpose(1, 2)) |
|
|
return rotated, Rz |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def translate_point_cloud(points: torch.Tensor, |
|
|
t: torch.Tensor = None, |
|
|
scale: float = 0.05): |
|
|
""" |
|
|
Translate a point cloud. |
|
|
|
|
|
Args: |
|
|
points: |
|
|
(N,3) or (B,N,3) |
|
|
t: |
|
|
Translation vector. |
|
|
For (N,3): None, (3,), or (1,3). |
|
|
For (B,N,3): None, (3,), (1,3), or (B,3). |
|
|
scale: |
|
|
Magnitude for random translation when t is None. |
|
|
|
|
|
Returns: |
|
|
translated_points: same shape as points |
|
|
t_out: |
|
|
(1,3) for single cloud |
|
|
(B,1,3) for batched clouds |
|
|
""" |
|
|
assert points.dim() in (2, 3) and points.size(-1) == 3, \ |
|
|
"Expected shape (N,3) or (B,N,3)" |
|
|
|
|
|
device, dtype = points.device, points.dtype |
|
|
|
|
|
if points.dim() == 2: |
|
|
|
|
|
if t is None: |
|
|
t = (torch.rand(1, 3, device=device, dtype=dtype) * 2 - 1) * scale |
|
|
t = t.view(1, 3) |
|
|
translated = points + t |
|
|
return translated, t |
|
|
|
|
|
else: |
|
|
|
|
|
B, N, _ = points.shape |
|
|
if t is None: |
|
|
t = (torch.rand(B, 3, device=device, dtype=dtype) * 2 - 1) * scale |
|
|
else: |
|
|
if t.dim() == 1: |
|
|
assert t.shape[0] == 3, "t must be (3,), (1,3), or (B,3)" |
|
|
t = t.view(1, 3).expand(B, -1) |
|
|
elif t.dim() == 2: |
|
|
if t.shape[0] == 1: |
|
|
|
|
|
t = t.expand(B, -1) |
|
|
else: |
|
|
assert t.shape == (B, 3), "t must be (3,), (1,3), or (B,3)" |
|
|
else: |
|
|
raise ValueError("t must have shape (3,), (1,3), or (B,3)") |
|
|
|
|
|
t_out = t.view(B, 1, 3) |
|
|
translated = points + t_out |
|
|
return translated, t_out |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def scale_point_cloud(points: torch.Tensor, |
|
|
s: torch.Tensor = None, |
|
|
min_s: float = 0.9, |
|
|
max_s: float = 1.1): |
|
|
""" |
|
|
Uniformly scale a point cloud. |
|
|
|
|
|
Args: |
|
|
points: |
|
|
(N,3) or (B,N,3) |
|
|
s: |
|
|
If points is (N,3): |
|
|
None or scalar tensor (or shape (1,)) |
|
|
If points is (B,N,3): |
|
|
None, scalar, or (B,) for per-cloud scaling. |
|
|
min_s, max_s: |
|
|
Range for random scaling when s is None. |
|
|
|
|
|
Returns: |
|
|
scaled_points: same shape as points |
|
|
s_vec: |
|
|
(1,3) if single cloud |
|
|
(B,1,3) if batched |
|
|
""" |
|
|
assert points.dim() in (2, 3) and points.size(-1) == 3, \ |
|
|
"Expected shape (N,3) or (B,N,3)" |
|
|
|
|
|
device, dtype = points.device, points.dtype |
|
|
|
|
|
if points.dim() == 2: |
|
|
|
|
|
if s is None: |
|
|
s = torch.empty(1, device=device, dtype=dtype).uniform_(min_s, max_s) |
|
|
if torch.is_tensor(s): |
|
|
s = s.view(1, 1) |
|
|
else: |
|
|
s = torch.tensor([[float(s)]], device=device, dtype=dtype) |
|
|
s_vec = s.repeat(1, 3) |
|
|
scaled = points * s |
|
|
return scaled, s_vec |
|
|
|
|
|
else: |
|
|
|
|
|
B, N, _ = points.shape |
|
|
if s is None: |
|
|
s = torch.empty(B, device=device, dtype=dtype).uniform_(min_s, max_s) |
|
|
elif not torch.is_tensor(s): |
|
|
s = torch.full((B,), float(s), device=device, dtype=dtype) |
|
|
|
|
|
assert s.shape == (B,), "For batched input, s must be scalar or shape (B,)" |
|
|
|
|
|
s = s.view(B, 1, 1) |
|
|
s_vec = s.repeat(1, 1, 3) |
|
|
scaled = points * s |
|
|
return scaled, s_vec |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def augment_point_cloud(points: torch.Tensor): |
|
|
""" |
|
|
Example augmentation pipeline: |
|
|
center -> random rotate -> random scale -> random translate |
|
|
|
|
|
Works for: |
|
|
(N,3) or (B,N,3) |
|
|
|
|
|
Returns: |
|
|
aug_points: same shape as input |
|
|
info: dict with keys center, R, s, t |
|
|
center: (1,3) or (B,1,3) |
|
|
R: (3,3) or (B,3,3) |
|
|
s: (1,3) or (B,1,3) |
|
|
t: (1,3) or (B,1,3) |
|
|
""" |
|
|
pts, center = center_point_cloud(points) |
|
|
pts, R = rotate_point_cloud(pts) |
|
|
pts, s = scale_point_cloud(pts, min_s=0.8, max_s=1.2) |
|
|
pts, t = translate_point_cloud(pts, scale=0.1) |
|
|
|
|
|
info = dict(center=center, R=R, s=s, t=t) |
|
|
return pts, info |
|
|
|