|
|
from contextlib import nullcontext |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from transformers import CLIPTextModelWithProjection |
|
|
|
|
|
from modules.build import LANGUAGE_REGISTRY |
|
|
from modules.utils import get_mlp_head |
|
|
|
|
|
@LANGUAGE_REGISTRY.register() |
|
|
class CLIPLanguageEncoder(nn.Module): |
|
|
def __init__(self, cfg, weights="openai/clip-vit-large-patch14", output_dim=768, freeze_backbone=True, use_projection=False, dropout=0.1): |
|
|
super().__init__() |
|
|
self.context = torch.no_grad if freeze_backbone else nullcontext |
|
|
self.model = CLIPTextModelWithProjection.from_pretrained(weights) |
|
|
self.use_projection = use_projection |
|
|
if use_projection: |
|
|
self.projection = get_mlp_head(self.model.config.hidden_size, output_dim, output_dim, dropout=dropout) |
|
|
|
|
|
|
|
|
def forward(self, txt_ids, txt_masks): |
|
|
with self.context(): |
|
|
txt = self.model(txt_ids, txt_masks).last_hidden_state |
|
|
txt = self.model.text_projection(txt) |
|
|
txt = torch.nn.functional.normalize(txt, p=2, dim=2) |
|
|
|
|
|
if self.use_projection: |
|
|
txt = self.projection(txt) |
|
|
return txt |