backup / modules /utils.py
MatchLab's picture
Upload folder using huggingface_hub
c94c8c9 verified
import copy
import einops
import torch
import torch.nn as nn
import torch.nn.functional as F
#########################################################
# General modules helpers
#########################################################
def get_activation_fn(activation_type):
if activation_type not in ["relu", "gelu", "glu"]:
raise RuntimeError(f"activation function currently support relu/gelu, not {activation_type}")
return getattr(F, activation_type)
def get_mlp_head(input_size, hidden_size, output_size, dropout=0):
return nn.Sequential(*[
nn.Linear(input_size, hidden_size),
nn.ReLU(),
nn.LayerNorm(hidden_size, eps=1e-12),
nn.Dropout(dropout),
nn.Linear(hidden_size, output_size)
])
def layer_repeat(module, N, share_layer=False):
if share_layer:
return nn.ModuleList([module] * N)
else:
return nn.ModuleList([copy.deepcopy(module) for _ in range(N - 1)] + [module])
#########################################################
# Specific modules helpers
#########################################################
def calc_pairwise_locs(obj_centers, obj_whls, eps=1e-10, pairwise_rel_type='center', spatial_dist_norm=True,
spatial_dim=5):
if pairwise_rel_type == 'mlp':
obj_locs = torch.cat([obj_centers, obj_whls], 2)
pairwise_locs = torch.cat(
[einops.repeat(obj_locs, 'b l d -> b l x d', x=obj_locs.size(1)),
einops.repeat(obj_locs, 'b l d -> b x l d', x=obj_locs.size(1))],
dim=3
)
return pairwise_locs
pairwise_locs = einops.repeat(obj_centers, 'b l d -> b l 1 d') \
- einops.repeat(obj_centers, 'b l d -> b 1 l d')
pairwise_dists = torch.sqrt(torch.sum(pairwise_locs ** 2, 3) + eps) # (b, l, l)
if spatial_dist_norm:
max_dists = torch.max(pairwise_dists.view(pairwise_dists.size(0), -1), dim=1)[0]
norm_pairwise_dists = pairwise_dists / einops.repeat(max_dists, 'b -> b 1 1')
else:
norm_pairwise_dists = pairwise_dists
if spatial_dim == 1:
return norm_pairwise_dists.unsqueeze(3)
pairwise_dists_2d = torch.sqrt(torch.sum(pairwise_locs[..., :2] ** 2, 3) + eps)
if pairwise_rel_type == 'center':
pairwise_locs = torch.stack(
[norm_pairwise_dists, pairwise_locs[..., 2] / pairwise_dists,
pairwise_dists_2d / pairwise_dists, pairwise_locs[..., 1] / pairwise_dists_2d,
pairwise_locs[..., 0] / pairwise_dists_2d],
dim=3
)
elif pairwise_rel_type == 'vertical_bottom':
bottom_centers = torch.clone(obj_centers)
bottom_centers[:, :, 2] -= obj_whls[:, :, 2]
bottom_pairwise_locs = einops.repeat(bottom_centers, 'b l d -> b l 1 d') \
- einops.repeat(bottom_centers, 'b l d -> b 1 l d')
bottom_pairwise_dists = torch.sqrt(torch.sum(bottom_pairwise_locs ** 2, 3) + eps) # (b, l, l)
bottom_pairwise_dists_2d = torch.sqrt(torch.sum(bottom_pairwise_locs[..., :2] ** 2, 3) + eps)
pairwise_locs = torch.stack(
[norm_pairwise_dists,
bottom_pairwise_locs[..., 2] / bottom_pairwise_dists,
bottom_pairwise_dists_2d / bottom_pairwise_dists,
pairwise_locs[..., 1] / pairwise_dists_2d,
pairwise_locs[..., 0] / pairwise_dists_2d],
dim=3
)
if spatial_dim == 4:
pairwise_locs = pairwise_locs[..., 1:]
return pairwise_locs
def calc_pairwise_locs_mv(obj_centers, pairwise_rel_type='center', spatial_dist_norm=True, spatial_dim=5):
eps=1e-10
pairwise_locs = einops.repeat(obj_centers, 'b l d -> b l 1 d') \
- einops.repeat(obj_centers, 'b l d -> b 1 l d')
pairwise_dists = torch.sqrt(torch.sum(pairwise_locs ** 2, 3) + eps) # (b, l, l)
if spatial_dist_norm:
max_dists = torch.max(pairwise_dists.view(pairwise_dists.size(0), -1), dim=1)[0]
norm_pairwise_dists = pairwise_dists / einops.repeat(max_dists, 'b -> b 1 1')
else:
norm_pairwise_dists = pairwise_dists
if spatial_dim == 1:
return norm_pairwise_dists.unsqueeze(3)
pairwise_dists_2d = torch.sqrt(torch.sum(pairwise_locs[..., :2] ** 2, 3) + eps)
if pairwise_rel_type == 'center':
pairwise_locs = torch.stack(
[norm_pairwise_dists, pairwise_locs[..., 2] / pairwise_dists,
pairwise_dists_2d / pairwise_dists, pairwise_locs[..., 1] / pairwise_dists_2d,
pairwise_locs[..., 0] / pairwise_dists_2d],
dim=3
)
if spatial_dim == 4:
pairwise_locs = pairwise_locs[..., 1:]
return pairwise_locs
# TODO: need to generalize this function to more use cases to be in modules/utils.py
def get_mixup_function(mixup_strategy, mixup_stage1, mixup_stage2):
if mixup_strategy is None:
return None
assert mixup_strategy in ['linear_decay', 'all_mixup']
if mixup_strategy == 'linear_decay':
return LinearDecayMixup(mixup_stage1, mixup_stage2)
elif mixup_strategy == 'all_mixup':
return AllMixup()
class AllMixup(nn.Module):
def __init__(self) -> None:
super().__init__()
def forward(self, obj_sem_cls_pred, obj_labels, cur_step, total_steps):
mixup_sem_cls_pred = torch.zeros_like(obj_sem_cls_pred)
for i in range(mixup_sem_cls_pred.shape[0]):
for j in range(mixup_sem_cls_pred.shape[1]):
if obj_labels[i, j] >= 0:
mixup_sem_cls_pred[i, j, obj_labels[i, j]] = 1.0
return mixup_sem_cls_pred
class LinearDecayMixup(nn.Module):
def __init__(self, mixup_stage1, mixup_stage2) -> None:
super().__init__()
self.stage1_rate = mixup_stage1
self.stage2_rate = mixup_stage2
assert self.stage2_rate > self.stage1_rate
def forward(self, obj_sem_cls_pred, obj_labels, cur_step, total_steps):
if cur_step < total_steps * self.stage1_rate:
mixup_ratio = 1.0
elif cur_step < total_steps * self.stage2_rate:
mixup_ratio = (total_steps * self.stage2_rate - cur_step) / (
(self.stage2_rate - self.stage1_rate) * total_steps)
else:
mixup_ratio = 0.0
# mixup
mixup_sem_cls_pred = obj_sem_cls_pred.clone() # B, O, 607
random_numer = torch.rand(mixup_sem_cls_pred.shape[0:2]) # B, O
mixup_mask = random_numer < mixup_ratio
for i in range(mixup_sem_cls_pred.shape[0]):
for j in range(mixup_sem_cls_pred.shape[1]):
if mixup_mask[i, j] and obj_labels[i, j] >= 0:
mixup_sem_cls_pred[i, j, :] = 0.0
mixup_sem_cls_pred[i, j, obj_labels[i, j]] = 1.0
return mixup_sem_cls_pred