|
|
import copy |
|
|
|
|
|
import einops |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_activation_fn(activation_type): |
|
|
if activation_type not in ["relu", "gelu", "glu"]: |
|
|
raise RuntimeError(f"activation function currently support relu/gelu, not {activation_type}") |
|
|
return getattr(F, activation_type) |
|
|
|
|
|
|
|
|
def get_mlp_head(input_size, hidden_size, output_size, dropout=0): |
|
|
return nn.Sequential(*[ |
|
|
nn.Linear(input_size, hidden_size), |
|
|
nn.ReLU(), |
|
|
nn.LayerNorm(hidden_size, eps=1e-12), |
|
|
nn.Dropout(dropout), |
|
|
nn.Linear(hidden_size, output_size) |
|
|
]) |
|
|
|
|
|
|
|
|
def layer_repeat(module, N, share_layer=False): |
|
|
if share_layer: |
|
|
return nn.ModuleList([module] * N) |
|
|
else: |
|
|
return nn.ModuleList([copy.deepcopy(module) for _ in range(N - 1)] + [module]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def calc_pairwise_locs(obj_centers, obj_whls, eps=1e-10, pairwise_rel_type='center', spatial_dist_norm=True, |
|
|
spatial_dim=5): |
|
|
if pairwise_rel_type == 'mlp': |
|
|
obj_locs = torch.cat([obj_centers, obj_whls], 2) |
|
|
pairwise_locs = torch.cat( |
|
|
[einops.repeat(obj_locs, 'b l d -> b l x d', x=obj_locs.size(1)), |
|
|
einops.repeat(obj_locs, 'b l d -> b x l d', x=obj_locs.size(1))], |
|
|
dim=3 |
|
|
) |
|
|
return pairwise_locs |
|
|
|
|
|
pairwise_locs = einops.repeat(obj_centers, 'b l d -> b l 1 d') \ |
|
|
- einops.repeat(obj_centers, 'b l d -> b 1 l d') |
|
|
pairwise_dists = torch.sqrt(torch.sum(pairwise_locs ** 2, 3) + eps) |
|
|
if spatial_dist_norm: |
|
|
max_dists = torch.max(pairwise_dists.view(pairwise_dists.size(0), -1), dim=1)[0] |
|
|
norm_pairwise_dists = pairwise_dists / einops.repeat(max_dists, 'b -> b 1 1') |
|
|
else: |
|
|
norm_pairwise_dists = pairwise_dists |
|
|
|
|
|
if spatial_dim == 1: |
|
|
return norm_pairwise_dists.unsqueeze(3) |
|
|
|
|
|
pairwise_dists_2d = torch.sqrt(torch.sum(pairwise_locs[..., :2] ** 2, 3) + eps) |
|
|
if pairwise_rel_type == 'center': |
|
|
pairwise_locs = torch.stack( |
|
|
[norm_pairwise_dists, pairwise_locs[..., 2] / pairwise_dists, |
|
|
pairwise_dists_2d / pairwise_dists, pairwise_locs[..., 1] / pairwise_dists_2d, |
|
|
pairwise_locs[..., 0] / pairwise_dists_2d], |
|
|
dim=3 |
|
|
) |
|
|
elif pairwise_rel_type == 'vertical_bottom': |
|
|
bottom_centers = torch.clone(obj_centers) |
|
|
bottom_centers[:, :, 2] -= obj_whls[:, :, 2] |
|
|
bottom_pairwise_locs = einops.repeat(bottom_centers, 'b l d -> b l 1 d') \ |
|
|
- einops.repeat(bottom_centers, 'b l d -> b 1 l d') |
|
|
bottom_pairwise_dists = torch.sqrt(torch.sum(bottom_pairwise_locs ** 2, 3) + eps) |
|
|
bottom_pairwise_dists_2d = torch.sqrt(torch.sum(bottom_pairwise_locs[..., :2] ** 2, 3) + eps) |
|
|
pairwise_locs = torch.stack( |
|
|
[norm_pairwise_dists, |
|
|
bottom_pairwise_locs[..., 2] / bottom_pairwise_dists, |
|
|
bottom_pairwise_dists_2d / bottom_pairwise_dists, |
|
|
pairwise_locs[..., 1] / pairwise_dists_2d, |
|
|
pairwise_locs[..., 0] / pairwise_dists_2d], |
|
|
dim=3 |
|
|
) |
|
|
|
|
|
if spatial_dim == 4: |
|
|
pairwise_locs = pairwise_locs[..., 1:] |
|
|
return pairwise_locs |
|
|
|
|
|
def calc_pairwise_locs_mv(obj_centers, pairwise_rel_type='center', spatial_dist_norm=True, spatial_dim=5): |
|
|
eps=1e-10 |
|
|
pairwise_locs = einops.repeat(obj_centers, 'b l d -> b l 1 d') \ |
|
|
- einops.repeat(obj_centers, 'b l d -> b 1 l d') |
|
|
pairwise_dists = torch.sqrt(torch.sum(pairwise_locs ** 2, 3) + eps) |
|
|
if spatial_dist_norm: |
|
|
max_dists = torch.max(pairwise_dists.view(pairwise_dists.size(0), -1), dim=1)[0] |
|
|
norm_pairwise_dists = pairwise_dists / einops.repeat(max_dists, 'b -> b 1 1') |
|
|
else: |
|
|
norm_pairwise_dists = pairwise_dists |
|
|
|
|
|
if spatial_dim == 1: |
|
|
return norm_pairwise_dists.unsqueeze(3) |
|
|
|
|
|
pairwise_dists_2d = torch.sqrt(torch.sum(pairwise_locs[..., :2] ** 2, 3) + eps) |
|
|
if pairwise_rel_type == 'center': |
|
|
pairwise_locs = torch.stack( |
|
|
[norm_pairwise_dists, pairwise_locs[..., 2] / pairwise_dists, |
|
|
pairwise_dists_2d / pairwise_dists, pairwise_locs[..., 1] / pairwise_dists_2d, |
|
|
pairwise_locs[..., 0] / pairwise_dists_2d], |
|
|
dim=3 |
|
|
) |
|
|
|
|
|
if spatial_dim == 4: |
|
|
pairwise_locs = pairwise_locs[..., 1:] |
|
|
return pairwise_locs |
|
|
|
|
|
|
|
|
def get_mixup_function(mixup_strategy, mixup_stage1, mixup_stage2): |
|
|
if mixup_strategy is None: |
|
|
return None |
|
|
assert mixup_strategy in ['linear_decay', 'all_mixup'] |
|
|
|
|
|
if mixup_strategy == 'linear_decay': |
|
|
return LinearDecayMixup(mixup_stage1, mixup_stage2) |
|
|
elif mixup_strategy == 'all_mixup': |
|
|
return AllMixup() |
|
|
|
|
|
|
|
|
class AllMixup(nn.Module): |
|
|
def __init__(self) -> None: |
|
|
super().__init__() |
|
|
|
|
|
def forward(self, obj_sem_cls_pred, obj_labels, cur_step, total_steps): |
|
|
mixup_sem_cls_pred = torch.zeros_like(obj_sem_cls_pred) |
|
|
for i in range(mixup_sem_cls_pred.shape[0]): |
|
|
for j in range(mixup_sem_cls_pred.shape[1]): |
|
|
if obj_labels[i, j] >= 0: |
|
|
mixup_sem_cls_pred[i, j, obj_labels[i, j]] = 1.0 |
|
|
return mixup_sem_cls_pred |
|
|
|
|
|
|
|
|
class LinearDecayMixup(nn.Module): |
|
|
def __init__(self, mixup_stage1, mixup_stage2) -> None: |
|
|
super().__init__() |
|
|
self.stage1_rate = mixup_stage1 |
|
|
self.stage2_rate = mixup_stage2 |
|
|
assert self.stage2_rate > self.stage1_rate |
|
|
|
|
|
def forward(self, obj_sem_cls_pred, obj_labels, cur_step, total_steps): |
|
|
if cur_step < total_steps * self.stage1_rate: |
|
|
mixup_ratio = 1.0 |
|
|
elif cur_step < total_steps * self.stage2_rate: |
|
|
mixup_ratio = (total_steps * self.stage2_rate - cur_step) / ( |
|
|
(self.stage2_rate - self.stage1_rate) * total_steps) |
|
|
else: |
|
|
mixup_ratio = 0.0 |
|
|
|
|
|
mixup_sem_cls_pred = obj_sem_cls_pred.clone() |
|
|
random_numer = torch.rand(mixup_sem_cls_pred.shape[0:2]) |
|
|
mixup_mask = random_numer < mixup_ratio |
|
|
for i in range(mixup_sem_cls_pred.shape[0]): |
|
|
for j in range(mixup_sem_cls_pred.shape[1]): |
|
|
if mixup_mask[i, j] and obj_labels[i, j] >= 0: |
|
|
mixup_sem_cls_pred[i, j, :] = 0.0 |
|
|
mixup_sem_cls_pred[i, j, obj_labels[i, j]] = 1.0 |
|
|
return mixup_sem_cls_pred |