backup / preprocess /multiscan.py
MatchLab's picture
Upload folder using huggingface_hub
c94c8c9 verified
import re
import json
from glob import glob
from omegaconf import OmegaConf
from joblib import Parallel, delayed, parallel_backend
import torch
from plyfile import PlyData
import numpy as np
import pandas as pd
from tqdm import tqdm
from preprocess.build import ProcessorBase
from preprocess.utils.label_convert import MULTISCAN_SCANNET as label_convert
from preprocess.utils.constant import *
class MultiScanProcessor(ProcessorBase):
def record_splits(self, scan_ids, ratio=0.8):
split_dir = self.save_root / 'split'
split_dir.mkdir(exist_ok=True)
if (split_dir / 'train_split.txt').exists() and (split_dir / 'val_split.txt').exists():
return
scan_len = len(scan_ids)
split = {
'train': [],
'val': []}
cur_split = 'train'
for scan_id in tqdm(sorted(scan_ids)):
split[cur_split].append(scan_id)
if len(split['train']) > ratio*scan_len:
cur_split = 'val'
for _s, _c in split.items():
with open(split_dir / f'{_s}_split.txt', 'w', encoding='utf-8') as fp:
fp.write('\n'.join(_c))
def read_all_scans(self):
scan_paths = glob(str(self.data_root) + '/*')
scans_df = []
for scan_path in scan_paths:
scan_id = re.findall(r"scene\_[0-9]{5}\_[0-9]{2}", scan_path)[0]
scene_id = '_'.join(scan_id.split('_')[:-1])
row = pd.DataFrame([[scene_id, scan_id, scan_path]],
columns=['sceneId', 'scanId', 'scanPath'])
scans_df.append(row)
scans_df = pd.concat(scans_df)
return scans_df
def process_point_cloud(self, scan_id, plydata, annotations):
inst_to_label = {}
_x = np.asarray(plydata['vertex']['x'])
_y = np.asarray(plydata['vertex']['y'])
_z = np.asarray(plydata['vertex']['z'])
_nx = np.asarray(plydata['vertex']['nx'])
_ny = np.asarray(plydata['vertex']['ny'])
_nz = np.asarray(plydata['vertex']['nz'])
_red = plydata['vertex']['red'].astype('float64')
_green = plydata['vertex']['green'].astype('float64')
_blue = plydata['vertex']['blue'].astype('float64')
vertices = np.column_stack((_x, _y, _z))
vertex_colors = np.column_stack((_red, _green, _blue))
vertex_instance = np.zeros((vertices.shape[0]))
triangles = np.vstack(plydata['face'].data['vertex_indices'])
object_ids = plydata['face'].data['objectId']
part_ids = plydata['face'].data['partId']
semseg_df = pd.DataFrame({'objectId': object_ids, 'partId': part_ids})
df = self.annotations_to_dataframe_obj(annotations)
for _, row in df.iterrows():
object_id = row['objectId']
assert object_id > 0, f"object id should be greater than 0, but got {object_id}"
object_label = row['objectLabel'].split('.')[0]
object_label_sn607 = label_convert[object_label]
condition1 = semseg_df['objectId'] == object_id
tri_indices = semseg_df[condition1].index.values
object_vertices = np.unique(triangles[tri_indices])
vertex_instance[object_vertices] = object_id
inst_to_label[object_id] = object_label_sn607
if np.max(vertex_colors) <= 1:
vertex_colors = vertex_colors * 255.0
center_points = np.mean(vertices, axis=0)
center_points[2] = np.min(vertices[:, 2])
vertices = vertices - center_points
assert vertex_colors.shape == vertices.shape
assert vertex_colors.shape[0] == vertex_instance.shape[0]
if self.check_key(self.output.pcd):
torch.save(inst_to_label, self.inst2label_path / f"{scan_id}.pth")
torch.save((vertices, vertex_colors, vertex_instance), self.pcd_path / f"{scan_id}.pth")
@staticmethod
def annotations_to_dataframe_obj(annotations):
objects = annotations['objects']
df_list = []
for obj in objects:
object_id = obj['objectId']
object_label = obj['label']
df_row = pd.DataFrame(
[[object_id, object_label]],
columns=['objectId', 'objectLabel']
)
df_list.append(df_row)
df = pd.concat(df_list)
return df
def scene_proc(self, scan_id):
data_root = self.data_root / scan_id
plydata = PlyData.read(data_root / f'{scan_id}.ply')
with open((data_root / f'{scan_id}.annotations.json'), "r", encoding='utf-8') as f:
annotations = json.load(f)
# process point cloud
self.process_point_cloud(scan_id, plydata, annotations)
def process_scans(self):
scans_df = self.read_all_scans()
scan_ids = scans_df['scanId'].unique()
self.log_starting_info(len(scan_ids))
if self.num_workers > 1:
with parallel_backend('multiprocessing', n_jobs=self.num_workers):
Parallel()(delayed(self.scene_proc)(scan_id) for scan_id in tqdm(scan_ids))
else:
for scan_id in tqdm(scan_ids):
print(scan_id)
self.scene_proc(scan_id)
if __name__ == '__main__':
cfg = OmegaConf.create({
'data_root': '/path/to/MultiScan',
'save_root': '/output/path/to/MultiScan',
'num_workers': 1,
'output': {
'pcd': True,
}
})
processor = MultiScanProcessor(cfg)
processor.process_scans()