|
|
import pickle |
|
|
from glob import glob |
|
|
from omegaconf import OmegaConf |
|
|
from joblib import Parallel, delayed, parallel_backend |
|
|
|
|
|
import torch |
|
|
import numpy as np |
|
|
from tqdm import tqdm |
|
|
|
|
|
from preprocess.build import ProcessorBase |
|
|
from preprocess.utils.label_convert import S3D_SCANNET as label_convert |
|
|
from preprocess.utils.constant import * |
|
|
|
|
|
|
|
|
PTS_LIMIT = 480000 |
|
|
|
|
|
|
|
|
class S3DProcessor(ProcessorBase): |
|
|
def record_splits(self, scan_ids): |
|
|
split_dir = self.save_root / 'split' |
|
|
split_dir.mkdir(exist_ok=True) |
|
|
split = { |
|
|
'train': [], |
|
|
'val': [], |
|
|
'test': []} |
|
|
split['train'] = [scan_id[1] for scan_id in scan_ids if scan_id[0] == 'train'] |
|
|
split['val'] = [scan_id[1] for scan_id in scan_ids if scan_id[0] == 'val'] |
|
|
split['test'] = [scan_id[1] for scan_id in scan_ids if scan_id[0] == 'test'] |
|
|
for _s, _c in split.items(): |
|
|
with open(split_dir / f'{_s}_split.txt', 'w', encoding='utf-8') as fp: |
|
|
fp.write('\n'.join(_c)) |
|
|
|
|
|
def read_all_scans(self): |
|
|
scan_ids = [] |
|
|
for split in ['train', 'val', 'test']: |
|
|
scan_paths = glob(str(self.data_root) + f'/{split}/*') |
|
|
scan_ids.extend([(split, '_'.join(path.split('/')[-1].split('_')[:-2])) for path in scan_paths]) |
|
|
return scan_ids |
|
|
|
|
|
def process_point_cloud(self, scan_id, plydata, annotations): |
|
|
vertices = plydata[0] |
|
|
vertex_colors = (plydata[1][:,:3] + 1) / 2.0 * 255.0 |
|
|
|
|
|
vertex_instance = - np.ones((vertices.shape[0])) |
|
|
inst_to_label = {} |
|
|
|
|
|
for _id, _box in enumerate(annotations['gt_boxes_upright_depth']): |
|
|
if annotations['class'][_id] in [38, 39, 40]: |
|
|
continue |
|
|
centroid = _box[:3] |
|
|
dimension = _box[3:6] |
|
|
box_max = centroid + dimension/2 |
|
|
box_min = centroid - dimension/2 |
|
|
point_max_mask = np.all(vertices < box_max, axis=1) |
|
|
point_min_mask = np.all(vertices > box_min, axis=1) |
|
|
point_mask = np.logical_and(point_max_mask, point_min_mask) |
|
|
vertex_instance[point_mask] = _id |
|
|
inst_to_label[_id] = label_convert[annotations['class'][_id]] |
|
|
|
|
|
center_points = np.mean(vertices, axis=0) |
|
|
center_points[2] = np.min(vertices[:, 2]) |
|
|
vertices = vertices - center_points |
|
|
assert vertex_colors.shape == vertices.shape |
|
|
assert vertex_colors.shape[0] == vertex_instance.shape[0] |
|
|
|
|
|
if vertices.shape[0] > PTS_LIMIT: |
|
|
pcd_idxs = np.random.choice(vertices.shape[0], size=PTS_LIMIT, replace=False) |
|
|
vertices = vertices[pcd_idxs] |
|
|
colors = colors[pcd_idxs] |
|
|
vertex_instance = vertex_instance[pcd_idxs] |
|
|
|
|
|
if self.check_key(self.output.pcd): |
|
|
torch.save(inst_to_label, self.inst2label_path / f"{scan_id}.pth") |
|
|
torch.save((vertices, vertex_colors, vertex_instance), self.pcd_path / f"{scan_id}.pth") |
|
|
|
|
|
def scene_proc(self, scan_id): |
|
|
split = scan_id[0] |
|
|
scan_id = scan_id[1] |
|
|
data_root = self.data_root / split |
|
|
|
|
|
if not (data_root / f'{scan_id}_1cm_seg.pth').exists(): |
|
|
return |
|
|
if not (self.data_root.parent / 'anno_mask' / f'{scan_id}_1cm.bin').exists(): |
|
|
return |
|
|
plydata = torch.load(data_root / f'{scan_id}_1cm_seg.pth') |
|
|
with open(self.data_root.parent / 'anno_mask' / f'{scan_id}_1cm.bin', 'rb') as f: |
|
|
annotations = pickle.load(f) |
|
|
|
|
|
|
|
|
self.process_point_cloud(scan_id, plydata, annotations) |
|
|
|
|
|
def process_scans(self): |
|
|
scan_ids = self.read_all_scans() |
|
|
self.log_starting_info(len(scan_ids)) |
|
|
|
|
|
if self.num_workers > 1: |
|
|
with parallel_backend('multiprocessing', n_jobs=self.num_workers): |
|
|
Parallel()(delayed(self.scene_proc)(scan_id) for scan_id in tqdm(scan_ids)) |
|
|
else: |
|
|
for scan_id in tqdm(scan_ids): |
|
|
self.scene_proc(scan_id) |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
|
|
|
|
cfg = OmegaConf.create({ |
|
|
'data_root': '/path/to/Structured3D/data_out/swin3d_new', |
|
|
'save_root': '/output/path/to/Structured3D', |
|
|
'num_workers': 1, |
|
|
'output': { |
|
|
'pcd': True, |
|
|
} |
|
|
}) |
|
|
processor = S3DProcessor(cfg) |
|
|
processor.process_scans() |
|
|
|