Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
1.65k
2.96k
End of preview. Expand in Data Studio

Manga109 YOLO Segmentation Dataset

Dataset Manga109 đã được chuyển đổi sang YOLO Instance Segmentation format, sẵn sàng cho training với Ultralytics YOLO.

📊 Dataset Information

Metric Value
Total Images 10,147
Train Images 8,204
Val Images 1,943
Classes 6
Image Size 1654 × 1170 pixels
Manga Titles 109

⚠️ Note: 472 images không có annotations (trang bìa, mục lục) đã được loại bỏ để đảm bảo chất lượng training.

🏷️ Classes

ID Name Description (EN) Mô tả (VI)
0 frame Manga panel frames Khung panel manga
1 text Text/dialogue Văn bản/đối thoại
2 face Character faces Khuôn mặt nhân vật
3 body Character bodies Thân thể nhân vật
4 balloon Speech balloons Bong bóng thoại
5 onomatopoeia Sound effects Từ tượng thanh

📈 Class Distribution

Class Train Count Percentage
body ~128,000 21.9%
text ~120,500 20.6%
balloon ~105,600 18.1%
face ~96,900 16.5%
frame ~85,300 14.5%
onomatopoeia ~47,400 8.4%

⚠️ Class Imbalance: body gấp ~2.6 lần onomatopoeia. Cân nhắc sử dụng class weighting khi training.

📁 Dataset Structure

manga109_yolo/
├── images/
│   ├── train/          # 8,204 images
│   └── val/            # 1,943 images
├── labels/
│   ├── train/          # YOLO format labels
│   └── val/
├── data.yaml           # YOLO config
└── README.md           # This file

🚀 Usage with YOLO

Basic Training

from ultralytics import YOLO

# Load model
model = YOLO('yolo11n-seg.pt')

# Train
model.train(
    data='path/to/data.yaml',
    epochs=100,
    imgsz=640,
    batch=16,
)

Recommended Config for Manga

model.train(
    data='path/to/data.yaml',
    epochs=150,
    imgsz=640,
    batch=16,
    patience=50,
    
    # Dense detection (avg 68 objects/image)
    max_det=600,
    iou=0.5,
    
    # Manga-specific augmentation
    flipud=0.0,     # Don't flip vertically (text will be upside down)
    mosaic=0.8,
    mixup=0.0,      # Don't mix (will corrupt text/balloons)
)

⚠️ Important Notes

  1. Dense Annotations: Average 68 objects/image, max 545. Tune max_det accordingly.
  2. Class Imbalance: Consider class weighting for onomatopoeia.
  3. Train/Val Split: Split by manga title (not by image) to avoid data leakage.
  4. Academic Use Only: Manga109 license restricts commercial use.

📜 License

This dataset is derived from Manga109 dataset. Manga109 is provided for academic purposes only.

⚠️ Commercial use is NOT permitted.

Please refer to the original Manga109 license: http://www.manga109.org/

📚 Citation

@article{manga109,
  title={Manga109 dataset and creation of metadata},
  author={Aizawa, Kiyoharu and Matsui, Yusuke and others},
  journal={International Conference on Document Analysis and Recognition (ICDAR)},
  year={2017}
}

@inproceedings{manga109_2020,
  title={Building a Manga Dataset "Manga109" with Annotations for Multimedia Applications},
  author={Matsui, Yusuke and others},
  booktitle={IEEE MultiMedia},
  year={2020}
}

🔗 Links


Dataset converted on January 4, 2026

Downloads last month
22