Building Defects RAG Index
This dataset contains pre-built retrieval artifacts for the Building Defects & Quality chatbot. It includes chunked documents, embeddings, and search indexes ready for deployment.
Purpose
This dataset enables Retrieval-Augmented Generation (RAG) for answering questions about building defects, construction tolerances, NCC Volume Two requirements, and VBA Guide to Standards and Tolerances.
Embedding Model
- Model:
BAAI/bge-small-en-v1.5 - Dimension: 384
- Storage: float16 for 50% compression
Dataset Schema
chunks.parquet
Document chunks with metadata for retrieval.
| Column | Type | Description |
|---|---|---|
| chunk_id | string | Unique identifier for the chunk |
| text | string | The chunk text content |
| heading_path | list[string] | Hierarchical heading context |
| source | string | Source PDF filename |
| page | int | Page number in source document |
| chunk_hash | string | SHA-256 hash (first 16 chars) |
embeddings.parquet
Embedding vectors for semantic search.
| Column | Type | Description |
|---|---|---|
| chunk_id | string | Matches chunk_id in chunks.parquet |
| chunk_hash | string | SHA-256 hash for deduplication |
| embedding | fixed_size_list[float16] | Embedding vector |
faiss_index.bin
Serialized FAISS index for fast approximate nearest neighbor search. Uses IndexFlatIP (inner product) for cosine similarity search.
bm25_index.pkl
Serialized BM25 index for lexical/keyword search. Used in hybrid retrieval with reciprocal rank fusion.
source_manifest.json
Manifest of source files with hashes for change detection.
| Field | Type | Description |
|---|---|---|
| sources | list[SourceFile] | Source file metadata |
| created_at | string | ISO 8601 creation timestamp |
| total_chunks | int | Total chunk count |
| total_embeddings | int | Total embedding count |
index_version.txt
Single-line version identifier for cache invalidation.
Format: {timestamp}_{hash} (e.g., 20240115_123456_abc123)
Statistics
- Total Chunks: 1,500
- Total Embeddings: 1,500
- Embedding Dimension: 384
- Source Documents: 0
- Storage Format: Parquet with Snappy compression
Usage
Loading with HuggingFace Datasets
from datasets import load_dataset
# Load chunks
chunks = load_dataset("sadickam/BuildingDefect_index", data_files="chunks.parquet")
# Load embeddings
embeddings = load_dataset("sadickam/BuildingDefect_index", data_files="embeddings.parquet")
Loading with huggingface_hub
from huggingface_hub import hf_hub_download
# Download FAISS index
faiss_path = hf_hub_download(
repo_id="sadickam/BuildingDefect_index",
filename="faiss_index.bin",
repo_type="dataset",
)
# Download BM25 index
bm25_path = hf_hub_download(
repo_id="sadickam/BuildingDefect_index",
filename="bm25_index.pkl",
repo_type="dataset",
)
Loading FAISS Index
import faiss
index = faiss.read_index(faiss_path)
License
This dataset is released under the MIT License.
Sources
This dataset is based on:
- NCC Volume Two (2022) - National Construction Code, Australian Building Codes Board
- VBA Guide to Standards and Tolerances - Victorian Building Authority
- Downloads last month
- 6