You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

Building Defects RAG Index

This dataset contains pre-built retrieval artifacts for the Building Defects & Quality chatbot. It includes chunked documents, embeddings, and search indexes ready for deployment.

Purpose

This dataset enables Retrieval-Augmented Generation (RAG) for answering questions about building defects, construction tolerances, NCC Volume Two requirements, and VBA Guide to Standards and Tolerances.

Embedding Model

  • Model: BAAI/bge-small-en-v1.5
  • Dimension: 384
  • Storage: float16 for 50% compression

Dataset Schema

chunks.parquet

Document chunks with metadata for retrieval.

Column Type Description
chunk_id string Unique identifier for the chunk
text string The chunk text content
heading_path list[string] Hierarchical heading context
source string Source PDF filename
page int Page number in source document
chunk_hash string SHA-256 hash (first 16 chars)

embeddings.parquet

Embedding vectors for semantic search.

Column Type Description
chunk_id string Matches chunk_id in chunks.parquet
chunk_hash string SHA-256 hash for deduplication
embedding fixed_size_list[float16] Embedding vector

faiss_index.bin

Serialized FAISS index for fast approximate nearest neighbor search. Uses IndexFlatIP (inner product) for cosine similarity search.

bm25_index.pkl

Serialized BM25 index for lexical/keyword search. Used in hybrid retrieval with reciprocal rank fusion.

source_manifest.json

Manifest of source files with hashes for change detection.

Field Type Description
sources list[SourceFile] Source file metadata
created_at string ISO 8601 creation timestamp
total_chunks int Total chunk count
total_embeddings int Total embedding count

index_version.txt

Single-line version identifier for cache invalidation. Format: {timestamp}_{hash} (e.g., 20240115_123456_abc123)

Statistics

  • Total Chunks: 1,500
  • Total Embeddings: 1,500
  • Embedding Dimension: 384
  • Source Documents: 0
  • Storage Format: Parquet with Snappy compression

Usage

Loading with HuggingFace Datasets

from datasets import load_dataset

# Load chunks
chunks = load_dataset("sadickam/BuildingDefect_index", data_files="chunks.parquet")

# Load embeddings
embeddings = load_dataset("sadickam/BuildingDefect_index", data_files="embeddings.parquet")

Loading with huggingface_hub

from huggingface_hub import hf_hub_download

# Download FAISS index
faiss_path = hf_hub_download(
    repo_id="sadickam/BuildingDefect_index",
    filename="faiss_index.bin",
    repo_type="dataset",
)

# Download BM25 index
bm25_path = hf_hub_download(
    repo_id="sadickam/BuildingDefect_index",
    filename="bm25_index.pkl",
    repo_type="dataset",
)

Loading FAISS Index

import faiss

index = faiss.read_index(faiss_path)

License

This dataset is released under the MIT License.

Sources

This dataset is based on:

  • NCC Volume Two (2022) - National Construction Code, Australian Building Codes Board
  • VBA Guide to Standards and Tolerances - Victorian Building Authority
Downloads last month
6