🎵 Tamil AI DJ Radio - MLX Optimized

Blazing-fast Qwen 2.5-0.5B for Apple Silicon (M1/M2/M3/M4)

MLX-optimized model for generating energetic Tanglish (Tamil-English) radio DJ commentary. Fused LoRA weights for maximum performance on Apple Silicon.


🎯 Model Overview

  • Base Model: Qwen/Qwen2.5-0.5B-Instruct (4-bit quantized)
  • Model Type: MLX Fused (LoRA weights merged)
  • Training Data: 5,027 Tanglish DJ commentary examples
  • Best Checkpoint: Iteration 2900 (validation loss: 1.856)
  • Model Size: 276MB
  • Framework: MLX (Apple Silicon optimized)

⚡ Performance

Speed (M1 Mac)

  • Loading: ~2 seconds
  • Inference: ~3 seconds for 150 tokens
  • Memory: <2GB RAM usage
  • Latency: ~20ms per token

Why MLX?

  • 🚀 3-5x faster than Transformers on Mac
  • 💾 Lower memory usage with unified memory
  • 🔋 Better power efficiency on Apple Silicon
  • 🎯 Native Metal acceleration

🚀 Quick Start

Installation

pip install mlx mlx-lm

Simple Usage

from mlx_lm import load, generate

# Load MLX-optimized model
model, tokenizer = load("felixmanojh/DJ-AI-Radio-MLX")

# Generate DJ commentary
messages = [
    {"role": "system", "content": "You are a Tamil AI radio DJ who speaks energetic Tanglish."},
    {"role": "user", "content": "Hype up a party track"}
]

prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
response = generate(model, tokenizer, prompt=prompt, max_tokens=150, verbose=False)
print(response)

Example Output:

Party mode activate! Friday night ah Saturday night mode activate!
Club vibes high-energy vibes! Dance floor crowded! Everyone jumping!
Party starter! Energy maximum! Music energizing!

💡 Why Use MLX Version?

✅ Advantages

Feature MLX Transformers
Speed (M1 Mac) ~3s ~10s
Memory <2GB ~4GB
Loading 2s 10s
Platform macOS only Cross-platform
Power Usage Low Higher

Use This Version For:

  • 🍎 Mac development (M1/M2/M3/M4)
  • 🚀 Local inference with maximum speed
  • 💻 Demos and prototypes on Apple Silicon
  • 🔬 Research with fast iteration cycles
  • 📱 macOS apps with native performance

📊 Training Details

Parameter Value
LoRA Rank 8 (fused into base)
LoRA Alpha 16
Training Iterations 6,000 (best @ 2900)
Validation Loss 1.856
Training Data 5,027 examples, 68 themes
Framework MLX (Apple)

📚 Supported Vibes

The model generates commentary for various moods:

High Energy:

  • 🎉 Party anthems
  • 💪 Workout motivation
  • 🎮 Gaming streams

Chill Vibes:

  • 🌊 Beach relaxation
  • 📚 Study focus
  • 🌧️ Rain moods

Themed:

  • 🎬 Movie/Cinema vibes
  • 🍜 Street food sessions
  • 🚗 Road trips
  • 🎆 Festival celebrations

🎓 Intended Use

✅ Recommended

  • Local development on Mac
  • Fast prototyping and demos
  • macOS applications
  • Real-time commentary generation
  • Educational demonstrations

❌ Not Recommended

  • Linux/Windows deployment (use Merged model)
  • Production servers (use Transformers version)
  • Non-Mac platforms

🔄 Model Variants

📌 Choose Your Format:

Model Format Size Platform Speed
DJ-AI-Radio-LoRA LoRA adapter 17MB Any Medium
DJ-AI-Radio Merged (HF) 276MB Any Medium
DJ-AI-Radio-MLX (this) Fused (MLX) 276MB Mac only Fast

🌐 Live Demo

Try the complete AI radio station:

🔗 Tamil AI DJ Radio Space

Features:

  • LLM-generated commentary (this model's merged version)
  • Voice cloning with Coqui XTTS
  • AI-generated music playback

📝 Citation

@software{tamil_ai_dj_radio_mlx_2025,
  author = {Felix Manojh},
  title = {Tamil AI DJ Radio - MLX Optimized},
  year = {2025},
  publisher = {HuggingFace},
  url = {https://huggingface.co/felixmanojh/DJ-AI-Radio-MLX},
  note = {MLX-optimized Qwen 2.5-0.5B for Tanglish DJ commentary}
}

📄 License

Apache 2.0 (inherits from Qwen 2.5)


🙏 Acknowledgments

  • Base Model: Qwen Team (Alibaba Cloud)
  • MLX Framework: Apple ML Research
  • Training Data: Claude API (Anthropic)
  • Inspiration: Tamil music culture

Built with ❤️ for the Tamil-speaking community

Downloads last month
5
Safetensors
Model size
77.3M params
Tensor type
F16
·
U32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for felixmanojh/DJ-AI-Radio-MLX

Base model

Qwen/Qwen2.5-0.5B
Quantized
(154)
this model

Space using felixmanojh/DJ-AI-Radio-MLX 1