Matryoshka Representation Learning
Paper
•
2205.13147
•
Published
•
25
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jeevanions/finetuned_arctic-embedd-l")
# Run inference
sentences = [
'How should risks or trustworthiness characteristics that cannot be measured be documented?',
'MEASURE 1.1: Approaches and metrics for measurement of AI risks enumerated during the MAP function are selected for \nimplementation starting with the most significant AI risks. The risks or trustworthiness characteristics that will not – or cannot – be \nmeasured are properly documented. \nAction ID \nSuggested Action \nGAI Risks \nMS-1.1-001 Employ methods to trace the origin and modifications of digital content. \nInformation Integrity \nMS-1.1-002 \nIntegrate tools designed to analyze content provenance and detect data \nanomalies, verify the authenticity of digital signatures, and identify patterns \nassociated with misinformation or manipulation. \nInformation Integrity \nMS-1.1-003 \nDisaggregate evaluation metrics by demographic factors to identify any \ndiscrepancies in how content provenance mechanisms work across diverse \npopulations. \nInformation Integrity; Harmful \nBias and Homogenization \nMS-1.1-004 Develop a suite of metrics to evaluate structured public feedback exercises',
'existing human performance considered as a performance baseline for the algorithm to meet pre-deployment, \nand as a lifecycle minimum performance standard. Decision possibilities resulting from performance testing \nshould include the possibility of not deploying the system. \nRisk identification and mitigation. Before deployment, and in a proactive and ongoing manner, poten\xad\ntial risks of the automated system should be identified and mitigated. Identified risks should focus on the \npotential for meaningful impact on people’s rights, opportunities, or access and include those to impacted \ncommunities that may not be direct users of the automated system, risks resulting from purposeful misuse of \nthe system, and other concerns identified via the consultation process. Assessment and, where possible, mea\xad\nsurement of the impact of risks should be included and balanced such that high impact risks receive attention',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
InformationRetrievalEvaluator| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.2807 |
| cosine_accuracy@3 | 0.4649 |
| cosine_accuracy@5 | 0.5351 |
| cosine_accuracy@10 | 0.7193 |
| cosine_precision@1 | 0.2807 |
| cosine_precision@3 | 0.155 |
| cosine_precision@5 | 0.107 |
| cosine_precision@10 | 0.0719 |
| cosine_recall@1 | 0.2807 |
| cosine_recall@3 | 0.4649 |
| cosine_recall@5 | 0.5351 |
| cosine_recall@10 | 0.7193 |
| cosine_ndcg@10 | 0.4797 |
| cosine_mrr@10 | 0.4064 |
| cosine_map@100 | 0.4236 |
| dot_accuracy@1 | 0.2807 |
| dot_accuracy@3 | 0.4649 |
| dot_accuracy@5 | 0.5351 |
| dot_accuracy@10 | 0.7193 |
| dot_precision@1 | 0.2807 |
| dot_precision@3 | 0.155 |
| dot_precision@5 | 0.107 |
| dot_precision@10 | 0.0719 |
| dot_recall@1 | 0.2807 |
| dot_recall@3 | 0.4649 |
| dot_recall@5 | 0.5351 |
| dot_recall@10 | 0.7193 |
| dot_ndcg@10 | 0.4797 |
| dot_mrr@10 | 0.4064 |
| dot_map@100 | 0.4236 |
sentence_0 and sentence_1| sentence_0 | sentence_1 | |
|---|---|---|
| type | string | string |
| details |
|
|
| sentence_0 | sentence_1 |
|---|---|
What are the key steps to obtain input from stakeholder communities to identify unacceptable use in AI systems? |
15 |
How can organizations maintain an updated hierarchy of identified and expected GAI risks? |
15 |
What are some examples of unacceptable uses of AI as identified by stakeholder communities? |
15 |
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
eval_strategy: stepsper_device_train_batch_size: 1per_device_eval_batch_size: 1num_train_epochs: 5multi_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 1per_device_eval_batch_size: 1per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin| Epoch | Step | Training Loss | cosine_map@100 |
|---|---|---|---|
| 0.0146 | 50 | - | 0.4134 |
| 0.0292 | 100 | - | 0.4134 |
| 0.0437 | 150 | - | 0.4134 |
| 0.0583 | 200 | - | 0.4134 |
| 0.0729 | 250 | - | 0.4134 |
| 0.0875 | 300 | - | 0.4134 |
| 0.1020 | 350 | - | 0.4134 |
| 0.1166 | 400 | - | 0.4134 |
| 0.1312 | 450 | - | 0.4134 |
| 0.1458 | 500 | 0.0 | 0.4134 |
| 0.1603 | 550 | - | 0.4134 |
| 0.1749 | 600 | - | 0.4134 |
| 0.1895 | 650 | - | 0.4134 |
| 0.2041 | 700 | - | 0.4134 |
| 0.2187 | 750 | - | 0.4134 |
| 0.2332 | 800 | - | 0.4134 |
| 0.2478 | 850 | - | 0.4134 |
| 0.2624 | 900 | - | 0.4134 |
| 0.2770 | 950 | - | 0.4134 |
| 0.2915 | 1000 | 0.0 | 0.4134 |
| 0.3061 | 1050 | - | 0.4134 |
| 0.3207 | 1100 | - | 0.4134 |
| 0.3353 | 1150 | - | 0.4134 |
| 0.3499 | 1200 | - | 0.4134 |
| 0.3644 | 1250 | - | 0.4134 |
| 0.3790 | 1300 | - | 0.4134 |
| 0.3936 | 1350 | - | 0.4134 |
| 0.4082 | 1400 | - | 0.4134 |
| 0.4227 | 1450 | - | 0.4134 |
| 0.4373 | 1500 | 0.0 | 0.4134 |
| 0.4519 | 1550 | - | 0.4134 |
| 0.4665 | 1600 | - | 0.4134 |
| 0.4810 | 1650 | - | 0.4134 |
| 0.4956 | 1700 | - | 0.4134 |
| 0.5102 | 1750 | - | 0.4134 |
| 0.5248 | 1800 | - | 0.4134 |
| 0.5394 | 1850 | - | 0.4134 |
| 0.5539 | 1900 | - | 0.4134 |
| 0.5685 | 1950 | - | 0.4134 |
| 0.5831 | 2000 | 0.0 | 0.4135 |
| 0.5977 | 2050 | - | 0.4135 |
| 0.6122 | 2100 | - | 0.4135 |
| 0.6268 | 2150 | - | 0.4135 |
| 0.6414 | 2200 | - | 0.4135 |
| 0.6560 | 2250 | - | 0.4135 |
| 0.6706 | 2300 | - | 0.4135 |
| 0.6851 | 2350 | - | 0.4135 |
| 0.6997 | 2400 | - | 0.4135 |
| 0.7143 | 2450 | - | 0.4134 |
| 0.7289 | 2500 | 0.0 | 0.4134 |
| 0.7434 | 2550 | - | 0.4134 |
| 0.7580 | 2600 | - | 0.4134 |
| 0.7726 | 2650 | - | 0.4134 |
| 0.7872 | 2700 | - | 0.4134 |
| 0.8017 | 2750 | - | 0.4134 |
| 0.8163 | 2800 | - | 0.4134 |
| 0.8309 | 2850 | - | 0.4135 |
| 0.8455 | 2900 | - | 0.4135 |
| 0.8601 | 2950 | - | 0.4135 |
| 0.8746 | 3000 | 0.0 | 0.4135 |
| 0.8892 | 3050 | - | 0.4135 |
| 0.9038 | 3100 | - | 0.4135 |
| 0.9184 | 3150 | - | 0.4135 |
| 0.9329 | 3200 | - | 0.4135 |
| 0.9475 | 3250 | - | 0.4135 |
| 0.9621 | 3300 | - | 0.4135 |
| 0.9767 | 3350 | - | 0.4135 |
| 0.9913 | 3400 | - | 0.4135 |
| 1.0 | 3430 | - | 0.4135 |
| 1.0058 | 3450 | - | 0.4135 |
| 1.0204 | 3500 | 0.0 | 0.4135 |
| 1.0350 | 3550 | - | 0.4135 |
| 1.0496 | 3600 | - | 0.4135 |
| 1.0641 | 3650 | - | 0.4135 |
| 1.0787 | 3700 | - | 0.4135 |
| 1.0933 | 3750 | - | 0.4135 |
| 1.1079 | 3800 | - | 0.4135 |
| 1.1224 | 3850 | - | 0.4135 |
| 1.1370 | 3900 | - | 0.4179 |
| 1.1516 | 3950 | - | 0.4179 |
| 1.1662 | 4000 | 0.0 | 0.4179 |
| 1.1808 | 4050 | - | 0.4179 |
| 1.1953 | 4100 | - | 0.4179 |
| 1.2099 | 4150 | - | 0.4179 |
| 1.2245 | 4200 | - | 0.4179 |
| 1.2391 | 4250 | - | 0.4179 |
| 1.2536 | 4300 | - | 0.4179 |
| 1.2682 | 4350 | - | 0.4179 |
| 1.2828 | 4400 | - | 0.4179 |
| 1.2974 | 4450 | - | 0.4179 |
| 1.3120 | 4500 | 0.0 | 0.4179 |
| 1.3265 | 4550 | - | 0.4179 |
| 1.3411 | 4600 | - | 0.4179 |
| 1.3557 | 4650 | - | 0.4179 |
| 1.3703 | 4700 | - | 0.4179 |
| 1.3848 | 4750 | - | 0.4179 |
| 1.3994 | 4800 | - | 0.4179 |
| 1.4140 | 4850 | - | 0.4179 |
| 1.4286 | 4900 | - | 0.4179 |
| 1.4431 | 4950 | - | 0.4179 |
| 1.4577 | 5000 | 0.0 | 0.4179 |
| 1.4723 | 5050 | - | 0.4179 |
| 1.4869 | 5100 | - | 0.4179 |
| 1.5015 | 5150 | - | 0.4179 |
| 1.5160 | 5200 | - | 0.4179 |
| 1.5306 | 5250 | - | 0.4179 |
| 1.5452 | 5300 | - | 0.4179 |
| 1.5598 | 5350 | - | 0.4179 |
| 1.5743 | 5400 | - | 0.4179 |
| 1.5889 | 5450 | - | 0.4179 |
| 1.6035 | 5500 | 0.0 | 0.4179 |
| 1.6181 | 5550 | - | 0.4179 |
| 1.6327 | 5600 | - | 0.4179 |
| 1.6472 | 5650 | - | 0.4179 |
| 1.6618 | 5700 | - | 0.4179 |
| 1.6764 | 5750 | - | 0.4179 |
| 1.6910 | 5800 | - | 0.4179 |
| 1.7055 | 5850 | - | 0.4179 |
| 1.7201 | 5900 | - | 0.4179 |
| 1.7347 | 5950 | - | 0.4179 |
| 1.7493 | 6000 | 0.0 | 0.4179 |
| 1.7638 | 6050 | - | 0.4179 |
| 1.7784 | 6100 | - | 0.4179 |
| 1.7930 | 6150 | - | 0.4179 |
| 1.8076 | 6200 | - | 0.4179 |
| 1.8222 | 6250 | - | 0.4179 |
| 1.8367 | 6300 | - | 0.4179 |
| 1.8513 | 6350 | - | 0.4179 |
| 1.8659 | 6400 | - | 0.4179 |
| 1.8805 | 6450 | - | 0.4179 |
| 1.8950 | 6500 | 0.0 | 0.4179 |
| 1.9096 | 6550 | - | 0.4179 |
| 1.9242 | 6600 | - | 0.4179 |
| 1.9388 | 6650 | - | 0.4179 |
| 1.9534 | 6700 | - | 0.4179 |
| 1.9679 | 6750 | - | 0.4179 |
| 1.9825 | 6800 | - | 0.4179 |
| 1.9971 | 6850 | - | 0.4179 |
| 2.0 | 6860 | - | 0.4179 |
| 2.0117 | 6900 | - | 0.4179 |
| 2.0262 | 6950 | - | 0.4179 |
| 2.0408 | 7000 | 0.0 | 0.4179 |
| 2.0554 | 7050 | - | 0.4179 |
| 2.0700 | 7100 | - | 0.4179 |
| 2.0845 | 7150 | - | 0.4179 |
| 2.0991 | 7200 | - | 0.4179 |
| 2.1137 | 7250 | - | 0.4179 |
| 2.1283 | 7300 | - | 0.4179 |
| 2.1429 | 7350 | - | 0.4179 |
| 2.1574 | 7400 | - | 0.4179 |
| 2.1720 | 7450 | - | 0.4179 |
| 2.1866 | 7500 | 0.0 | 0.4179 |
| 2.2012 | 7550 | - | 0.4179 |
| 2.2157 | 7600 | - | 0.4179 |
| 2.2303 | 7650 | - | 0.4179 |
| 2.2449 | 7700 | - | 0.4179 |
| 2.2595 | 7750 | - | 0.4179 |
| 2.2741 | 7800 | - | 0.4179 |
| 2.2886 | 7850 | - | 0.4179 |
| 2.3032 | 7900 | - | 0.4179 |
| 2.3178 | 7950 | - | 0.4179 |
| 2.3324 | 8000 | 0.0 | 0.4179 |
| 2.3469 | 8050 | - | 0.4179 |
| 2.3615 | 8100 | - | 0.4179 |
| 2.3761 | 8150 | - | 0.4179 |
| 2.3907 | 8200 | - | 0.4179 |
| 2.4052 | 8250 | - | 0.4179 |
| 2.4198 | 8300 | - | 0.4179 |
| 2.4344 | 8350 | - | 0.4179 |
| 2.4490 | 8400 | - | 0.4179 |
| 2.4636 | 8450 | - | 0.4179 |
| 2.4781 | 8500 | 0.0 | 0.4179 |
| 2.4927 | 8550 | - | 0.4179 |
| 2.5073 | 8600 | - | 0.4179 |
| 2.5219 | 8650 | - | 0.4179 |
| 2.5364 | 8700 | - | 0.4179 |
| 2.5510 | 8750 | - | 0.4179 |
| 2.5656 | 8800 | - | 0.4179 |
| 2.5802 | 8850 | - | 0.4179 |
| 2.5948 | 8900 | - | 0.4179 |
| 2.6093 | 8950 | - | 0.4179 |
| 2.6239 | 9000 | 0.0 | 0.4179 |
| 2.6385 | 9050 | - | 0.4179 |
| 2.6531 | 9100 | - | 0.4179 |
| 2.6676 | 9150 | - | 0.4179 |
| 2.6822 | 9200 | - | 0.4179 |
| 2.6968 | 9250 | - | 0.4223 |
| 2.7114 | 9300 | - | 0.4223 |
| 2.7259 | 9350 | - | 0.4223 |
| 2.7405 | 9400 | - | 0.4223 |
| 2.7551 | 9450 | - | 0.4223 |
| 2.7697 | 9500 | 0.0 | 0.4223 |
| 2.7843 | 9550 | - | 0.4223 |
| 2.7988 | 9600 | - | 0.4223 |
| 2.8134 | 9650 | - | 0.4223 |
| 2.8280 | 9700 | - | 0.4223 |
| 2.8426 | 9750 | - | 0.4223 |
| 2.8571 | 9800 | - | 0.4223 |
| 2.8717 | 9850 | - | 0.4223 |
| 2.8863 | 9900 | - | 0.4223 |
| 2.9009 | 9950 | - | 0.4223 |
| 2.9155 | 10000 | 0.0 | 0.4223 |
| 2.9300 | 10050 | - | 0.4223 |
| 2.9446 | 10100 | - | 0.4223 |
| 2.9592 | 10150 | - | 0.4223 |
| 2.9738 | 10200 | - | 0.4223 |
| 2.9883 | 10250 | - | 0.4223 |
| 3.0 | 10290 | - | 0.4223 |
| 3.0029 | 10300 | - | 0.4223 |
| 3.0175 | 10350 | - | 0.4223 |
| 3.0321 | 10400 | - | 0.4223 |
| 3.0466 | 10450 | - | 0.4223 |
| 3.0612 | 10500 | 0.0 | 0.4223 |
| 3.0758 | 10550 | - | 0.4223 |
| 3.0904 | 10600 | - | 0.4223 |
| 3.1050 | 10650 | - | 0.4223 |
| 3.1195 | 10700 | - | 0.4223 |
| 3.1341 | 10750 | - | 0.4223 |
| 3.1487 | 10800 | - | 0.4223 |
| 3.1633 | 10850 | - | 0.4223 |
| 3.1778 | 10900 | - | 0.4223 |
| 3.1924 | 10950 | - | 0.4223 |
| 3.2070 | 11000 | 0.0 | 0.4223 |
| 3.2216 | 11050 | - | 0.4223 |
| 3.2362 | 11100 | - | 0.4223 |
| 3.2507 | 11150 | - | 0.4223 |
| 3.2653 | 11200 | - | 0.4223 |
| 3.2799 | 11250 | - | 0.4223 |
| 3.2945 | 11300 | - | 0.4223 |
| 3.3090 | 11350 | - | 0.4223 |
| 3.3236 | 11400 | - | 0.4223 |
| 3.3382 | 11450 | - | 0.4223 |
| 3.3528 | 11500 | 0.0 | 0.4223 |
| 3.3673 | 11550 | - | 0.4223 |
| 3.3819 | 11600 | - | 0.4223 |
| 3.3965 | 11650 | - | 0.4223 |
| 3.4111 | 11700 | - | 0.4223 |
| 3.4257 | 11750 | - | 0.4223 |
| 3.4402 | 11800 | - | 0.4223 |
| 3.4548 | 11850 | - | 0.4223 |
| 3.4694 | 11900 | - | 0.4223 |
| 3.4840 | 11950 | - | 0.4223 |
| 3.4985 | 12000 | 0.0 | 0.4223 |
| 3.5131 | 12050 | - | 0.4223 |
| 3.5277 | 12100 | - | 0.4223 |
| 3.5423 | 12150 | - | 0.4223 |
| 3.5569 | 12200 | - | 0.4223 |
| 3.5714 | 12250 | - | 0.4223 |
| 3.5860 | 12300 | - | 0.4223 |
| 3.6006 | 12350 | - | 0.4223 |
| 3.6152 | 12400 | - | 0.4223 |
| 3.6297 | 12450 | - | 0.4223 |
| 3.6443 | 12500 | 0.0 | 0.4223 |
| 3.6589 | 12550 | - | 0.4223 |
| 3.6735 | 12600 | - | 0.4223 |
| 3.6880 | 12650 | - | 0.4223 |
| 3.7026 | 12700 | - | 0.4223 |
| 3.7172 | 12750 | - | 0.4223 |
| 3.7318 | 12800 | - | 0.4223 |
| 3.7464 | 12850 | - | 0.4223 |
| 3.7609 | 12900 | - | 0.4223 |
| 3.7755 | 12950 | - | 0.4223 |
| 3.7901 | 13000 | 0.0 | 0.4223 |
| 3.8047 | 13050 | - | 0.4223 |
| 3.8192 | 13100 | - | 0.4226 |
| 3.8338 | 13150 | - | 0.4226 |
| 3.8484 | 13200 | - | 0.4226 |
| 3.8630 | 13250 | - | 0.4226 |
| 3.8776 | 13300 | - | 0.4226 |
| 3.8921 | 13350 | - | 0.4226 |
| 3.9067 | 13400 | - | 0.4226 |
| 3.9213 | 13450 | - | 0.4226 |
| 3.9359 | 13500 | 0.0 | 0.4226 |
| 3.9504 | 13550 | - | 0.4226 |
| 3.9650 | 13600 | - | 0.4226 |
| 3.9796 | 13650 | - | 0.4226 |
| 3.9942 | 13700 | - | 0.4226 |
| 4.0 | 13720 | - | 0.4226 |
| 4.0087 | 13750 | - | 0.4226 |
| 4.0233 | 13800 | - | 0.4226 |
| 4.0379 | 13850 | - | 0.4226 |
| 4.0525 | 13900 | - | 0.4226 |
| 4.0671 | 13950 | - | 0.4226 |
| 4.0816 | 14000 | 0.0 | 0.4226 |
| 4.0962 | 14050 | - | 0.4226 |
| 4.1108 | 14100 | - | 0.4226 |
| 4.1254 | 14150 | - | 0.4226 |
| 4.1399 | 14200 | - | 0.4226 |
| 4.1545 | 14250 | - | 0.4226 |
| 4.1691 | 14300 | - | 0.4226 |
| 4.1837 | 14350 | - | 0.4226 |
| 4.1983 | 14400 | - | 0.4226 |
| 4.2128 | 14450 | - | 0.4226 |
| 4.2274 | 14500 | 0.0 | 0.4226 |
| 4.2420 | 14550 | - | 0.4226 |
| 4.2566 | 14600 | - | 0.4226 |
| 4.2711 | 14650 | - | 0.4226 |
| 4.2857 | 14700 | - | 0.4226 |
| 4.3003 | 14750 | - | 0.4226 |
| 4.3149 | 14800 | - | 0.4226 |
| 4.3294 | 14850 | - | 0.4226 |
| 4.3440 | 14900 | - | 0.4226 |
| 4.3586 | 14950 | - | 0.4226 |
| 4.3732 | 15000 | 0.0 | 0.4226 |
| 4.3878 | 15050 | - | 0.4226 |
| 4.4023 | 15100 | - | 0.4226 |
| 4.4169 | 15150 | - | 0.4226 |
| 4.4315 | 15200 | - | 0.4226 |
| 4.4461 | 15250 | - | 0.4226 |
| 4.4606 | 15300 | - | 0.4226 |
| 4.4752 | 15350 | - | 0.4226 |
| 4.4898 | 15400 | - | 0.4226 |
| 4.5044 | 15450 | - | 0.4226 |
| 4.5190 | 15500 | 0.0 | 0.4226 |
| 4.5335 | 15550 | - | 0.4226 |
| 4.5481 | 15600 | - | 0.4226 |
| 4.5627 | 15650 | - | 0.4226 |
| 4.5773 | 15700 | - | 0.4226 |
| 4.5918 | 15750 | - | 0.4226 |
| 4.6064 | 15800 | - | 0.4226 |
| 4.6210 | 15850 | - | 0.4226 |
| 4.6356 | 15900 | - | 0.4226 |
| 4.6501 | 15950 | - | 0.4226 |
| 4.6647 | 16000 | 0.0 | 0.4226 |
| 4.6793 | 16050 | - | 0.4226 |
| 4.6939 | 16100 | - | 0.4226 |
| 4.7085 | 16150 | - | 0.4226 |
| 4.7230 | 16200 | - | 0.4226 |
| 4.7376 | 16250 | - | 0.4226 |
| 4.7522 | 16300 | - | 0.4226 |
| 4.7668 | 16350 | - | 0.4226 |
| 4.7813 | 16400 | - | 0.4226 |
| 4.7959 | 16450 | - | 0.4226 |
| 4.8105 | 16500 | 0.0 | 0.4226 |
| 4.8251 | 16550 | - | 0.4226 |
| 4.8397 | 16600 | - | 0.4226 |
| 4.8542 | 16650 | - | 0.4226 |
| 4.8688 | 16700 | - | 0.4226 |
| 4.8834 | 16750 | - | 0.4226 |
| 4.8980 | 16800 | - | 0.4226 |
| 4.9125 | 16850 | - | 0.4226 |
| 4.9271 | 16900 | - | 0.4226 |
| 4.9417 | 16950 | - | 0.4226 |
| 4.9563 | 17000 | 0.0 | 0.4226 |
| 4.9708 | 17050 | - | 0.4226 |
| 4.9854 | 17100 | - | 0.4226 |
| 5.0 | 17150 | - | 0.4226 |
| 0.0146 | 50 | - | 0.4226 |
| 0.0292 | 100 | - | 0.4226 |
| 0.0437 | 150 | - | 0.4226 |
| 0.0583 | 200 | - | 0.4226 |
| 0.0729 | 250 | - | 0.4226 |
| 0.0875 | 300 | - | 0.4226 |
| 0.1020 | 350 | - | 0.4226 |
| 0.1166 | 400 | - | 0.4226 |
| 0.1312 | 450 | - | 0.4226 |
| 0.1458 | 500 | 0.0 | 0.4226 |
| 0.1603 | 550 | - | 0.4226 |
| 0.1749 | 600 | - | 0.4226 |
| 0.1895 | 650 | - | 0.4226 |
| 0.2041 | 700 | - | 0.4226 |
| 0.2187 | 750 | - | 0.4226 |
| 0.2332 | 800 | - | 0.4226 |
| 0.2478 | 850 | - | 0.4226 |
| 0.2624 | 900 | - | 0.4226 |
| 0.2770 | 950 | - | 0.4226 |
| 0.2915 | 1000 | 0.0 | 0.4227 |
| 0.3061 | 1050 | - | 0.4227 |
| 0.3207 | 1100 | - | 0.4227 |
| 0.3353 | 1150 | - | 0.4227 |
| 0.3499 | 1200 | - | 0.4227 |
| 0.3644 | 1250 | - | 0.4227 |
| 0.3790 | 1300 | - | 0.4227 |
| 0.3936 | 1350 | - | 0.4227 |
| 0.4082 | 1400 | - | 0.4227 |
| 0.4227 | 1450 | - | 0.4227 |
| 0.4373 | 1500 | 0.0 | 0.4227 |
| 0.4519 | 1550 | - | 0.4227 |
| 0.4665 | 1600 | - | 0.4227 |
| 0.4810 | 1650 | - | 0.4227 |
| 0.4956 | 1700 | - | 0.4227 |
| 0.5102 | 1750 | - | 0.4227 |
| 0.5248 | 1800 | - | 0.4227 |
| 0.5394 | 1850 | - | 0.4227 |
| 0.5539 | 1900 | - | 0.4227 |
| 0.5685 | 1950 | - | 0.4227 |
| 0.5831 | 2000 | 0.0 | 0.4227 |
| 0.5977 | 2050 | - | 0.4227 |
| 0.6122 | 2100 | - | 0.4227 |
| 0.6268 | 2150 | - | 0.4227 |
| 0.6414 | 2200 | - | 0.4227 |
| 0.6560 | 2250 | - | 0.4227 |
| 0.6706 | 2300 | - | 0.4227 |
| 0.6851 | 2350 | - | 0.4227 |
| 0.6997 | 2400 | - | 0.4227 |
| 0.7143 | 2450 | - | 0.4227 |
| 0.7289 | 2500 | 0.0 | 0.4227 |
| 0.7434 | 2550 | - | 0.4227 |
| 0.7580 | 2600 | - | 0.4227 |
| 0.7726 | 2650 | - | 0.4227 |
| 0.7872 | 2700 | - | 0.4227 |
| 0.8017 | 2750 | - | 0.4227 |
| 0.8163 | 2800 | - | 0.4227 |
| 0.8309 | 2850 | - | 0.4227 |
| 0.8455 | 2900 | - | 0.4227 |
| 0.8601 | 2950 | - | 0.4227 |
| 0.8746 | 3000 | 0.0 | 0.4227 |
| 0.8892 | 3050 | - | 0.4227 |
| 0.9038 | 3100 | - | 0.4227 |
| 0.9184 | 3150 | - | 0.4227 |
| 0.9329 | 3200 | - | 0.4227 |
| 0.9475 | 3250 | - | 0.4227 |
| 0.9621 | 3300 | - | 0.4227 |
| 0.9767 | 3350 | - | 0.4227 |
| 0.9913 | 3400 | - | 0.4227 |
| 1.0 | 3430 | - | 0.4227 |
| 1.0058 | 3450 | - | 0.4227 |
| 1.0204 | 3500 | 0.0 | 0.4227 |
| 1.0350 | 3550 | - | 0.4227 |
| 1.0496 | 3600 | - | 0.4227 |
| 1.0641 | 3650 | - | 0.4227 |
| 1.0787 | 3700 | - | 0.4227 |
| 1.0933 | 3750 | - | 0.4227 |
| 1.1079 | 3800 | - | 0.4227 |
| 1.1224 | 3850 | - | 0.4227 |
| 1.1370 | 3900 | - | 0.4227 |
| 1.1516 | 3950 | - | 0.4227 |
| 1.1662 | 4000 | 0.0 | 0.4227 |
| 1.1808 | 4050 | - | 0.4227 |
| 1.1953 | 4100 | - | 0.4227 |
| 1.2099 | 4150 | - | 0.4231 |
| 1.2245 | 4200 | - | 0.4231 |
| 1.2391 | 4250 | - | 0.4231 |
| 1.2536 | 4300 | - | 0.4231 |
| 1.2682 | 4350 | - | 0.4231 |
| 1.2828 | 4400 | - | 0.4231 |
| 1.2974 | 4450 | - | 0.4231 |
| 1.3120 | 4500 | 0.0 | 0.4231 |
| 1.3265 | 4550 | - | 0.4231 |
| 1.3411 | 4600 | - | 0.4231 |
| 1.3557 | 4650 | - | 0.4232 |
| 1.3703 | 4700 | - | 0.4232 |
| 1.3848 | 4750 | - | 0.4232 |
| 1.3994 | 4800 | - | 0.4232 |
| 1.4140 | 4850 | - | 0.4232 |
| 1.4286 | 4900 | - | 0.4232 |
| 1.4431 | 4950 | - | 0.4232 |
| 1.4577 | 5000 | 0.0 | 0.4232 |
| 1.4723 | 5050 | - | 0.4232 |
| 1.4869 | 5100 | - | 0.4232 |
| 1.5015 | 5150 | - | 0.4232 |
| 1.5160 | 5200 | - | 0.4232 |
| 1.5306 | 5250 | - | 0.4232 |
| 1.5452 | 5300 | - | 0.4233 |
| 1.5598 | 5350 | - | 0.4233 |
| 1.5743 | 5400 | - | 0.4233 |
| 1.5889 | 5450 | - | 0.4233 |
| 1.6035 | 5500 | 0.0 | 0.4233 |
| 1.6181 | 5550 | - | 0.4233 |
| 1.6327 | 5600 | - | 0.4233 |
| 1.6472 | 5650 | - | 0.4233 |
| 1.6618 | 5700 | - | 0.4233 |
| 1.6764 | 5750 | - | 0.4233 |
| 1.6910 | 5800 | - | 0.4233 |
| 1.7055 | 5850 | - | 0.4233 |
| 1.7201 | 5900 | - | 0.4233 |
| 1.7347 | 5950 | - | 0.4233 |
| 1.7493 | 6000 | 0.0 | 0.4233 |
| 1.7638 | 6050 | - | 0.4234 |
| 1.7784 | 6100 | - | 0.4234 |
| 1.7930 | 6150 | - | 0.4234 |
| 1.8076 | 6200 | - | 0.4234 |
| 1.8222 | 6250 | - | 0.4234 |
| 1.8367 | 6300 | - | 0.4234 |
| 1.8513 | 6350 | - | 0.4234 |
| 1.8659 | 6400 | - | 0.4234 |
| 1.8805 | 6450 | - | 0.4234 |
| 1.8950 | 6500 | 0.0 | 0.4234 |
| 1.9096 | 6550 | - | 0.4234 |
| 1.9242 | 6600 | - | 0.4234 |
| 1.9388 | 6650 | - | 0.4234 |
| 1.9534 | 6700 | - | 0.4234 |
| 1.9679 | 6750 | - | 0.4234 |
| 1.9825 | 6800 | - | 0.4234 |
| 1.9971 | 6850 | - | 0.4234 |
| 2.0 | 6860 | - | 0.4234 |
| 2.0117 | 6900 | - | 0.4234 |
| 2.0262 | 6950 | - | 0.4234 |
| 2.0408 | 7000 | 0.0 | 0.4234 |
| 2.0554 | 7050 | - | 0.4234 |
| 2.0700 | 7100 | - | 0.4234 |
| 2.0845 | 7150 | - | 0.4234 |
| 2.0991 | 7200 | - | 0.4234 |
| 2.1137 | 7250 | - | 0.4234 |
| 2.1283 | 7300 | - | 0.4234 |
| 2.1429 | 7350 | - | 0.4234 |
| 2.1574 | 7400 | - | 0.4234 |
| 2.1720 | 7450 | - | 0.4234 |
| 2.1866 | 7500 | 0.0 | 0.4234 |
| 2.2012 | 7550 | - | 0.4234 |
| 2.2157 | 7600 | - | 0.4234 |
| 2.2303 | 7650 | - | 0.4234 |
| 2.2449 | 7700 | - | 0.4234 |
| 2.2595 | 7750 | - | 0.4234 |
| 2.2741 | 7800 | - | 0.4234 |
| 2.2886 | 7850 | - | 0.4234 |
| 2.3032 | 7900 | - | 0.4234 |
| 2.3178 | 7950 | - | 0.4234 |
| 2.3324 | 8000 | 0.0 | 0.4234 |
| 2.3469 | 8050 | - | 0.4234 |
| 2.3615 | 8100 | - | 0.4234 |
| 2.3761 | 8150 | - | 0.4234 |
| 2.3907 | 8200 | - | 0.4234 |
| 2.4052 | 8250 | - | 0.4234 |
| 2.4198 | 8300 | - | 0.4234 |
| 2.4344 | 8350 | - | 0.4234 |
| 2.4490 | 8400 | - | 0.4234 |
| 2.4636 | 8450 | - | 0.4234 |
| 2.4781 | 8500 | 0.0 | 0.4234 |
| 2.4927 | 8550 | - | 0.4234 |
| 2.5073 | 8600 | - | 0.4234 |
| 2.5219 | 8650 | - | 0.4234 |
| 2.5364 | 8700 | - | 0.4234 |
| 2.5510 | 8750 | - | 0.4234 |
| 2.5656 | 8800 | - | 0.4234 |
| 2.5802 | 8850 | - | 0.4234 |
| 2.5948 | 8900 | - | 0.4234 |
| 2.6093 | 8950 | - | 0.4234 |
| 2.6239 | 9000 | 0.0 | 0.4234 |
| 2.6385 | 9050 | - | 0.4234 |
| 2.6531 | 9100 | - | 0.4234 |
| 2.6676 | 9150 | - | 0.4234 |
| 2.6822 | 9200 | - | 0.4234 |
| 2.6968 | 9250 | - | 0.4234 |
| 2.7114 | 9300 | - | 0.4234 |
| 2.7259 | 9350 | - | 0.4234 |
| 2.7405 | 9400 | - | 0.4234 |
| 2.7551 | 9450 | - | 0.4234 |
| 2.7697 | 9500 | 0.0 | 0.4234 |
| 2.7843 | 9550 | - | 0.4234 |
| 2.7988 | 9600 | - | 0.4234 |
| 2.8134 | 9650 | - | 0.4234 |
| 2.8280 | 9700 | - | 0.4234 |
| 2.8426 | 9750 | - | 0.4234 |
| 2.8571 | 9800 | - | 0.4234 |
| 2.8717 | 9850 | - | 0.4234 |
| 2.8863 | 9900 | - | 0.4234 |
| 2.9009 | 9950 | - | 0.4234 |
| 2.9155 | 10000 | 0.0 | 0.4234 |
| 2.9300 | 10050 | - | 0.4234 |
| 2.9446 | 10100 | - | 0.4234 |
| 2.9592 | 10150 | - | 0.4234 |
| 2.9738 | 10200 | - | 0.4234 |
| 2.9883 | 10250 | - | 0.4234 |
| 3.0 | 10290 | - | 0.4234 |
| 3.0029 | 10300 | - | 0.4234 |
| 3.0175 | 10350 | - | 0.4234 |
| 3.0321 | 10400 | - | 0.4234 |
| 3.0466 | 10450 | - | 0.4234 |
| 3.0612 | 10500 | 0.0 | 0.4234 |
| 3.0758 | 10550 | - | 0.4234 |
| 3.0904 | 10600 | - | 0.4234 |
| 3.1050 | 10650 | - | 0.4234 |
| 3.1195 | 10700 | - | 0.4234 |
| 3.1341 | 10750 | - | 0.4234 |
| 3.1487 | 10800 | - | 0.4234 |
| 3.1633 | 10850 | - | 0.4234 |
| 3.1778 | 10900 | - | 0.4234 |
| 3.1924 | 10950 | - | 0.4234 |
| 3.2070 | 11000 | 0.0 | 0.4234 |
| 3.2216 | 11050 | - | 0.4234 |
| 3.2362 | 11100 | - | 0.4234 |
| 3.2507 | 11150 | - | 0.4234 |
| 3.2653 | 11200 | - | 0.4234 |
| 3.2799 | 11250 | - | 0.4234 |
| 3.2945 | 11300 | - | 0.4234 |
| 3.3090 | 11350 | - | 0.4234 |
| 3.3236 | 11400 | - | 0.4234 |
| 3.3382 | 11450 | - | 0.4234 |
| 3.3528 | 11500 | 0.0 | 0.4234 |
| 3.3673 | 11550 | - | 0.4234 |
| 3.3819 | 11600 | - | 0.4234 |
| 3.3965 | 11650 | - | 0.4234 |
| 3.4111 | 11700 | - | 0.4234 |
| 3.4257 | 11750 | - | 0.4234 |
| 3.4402 | 11800 | - | 0.4234 |
| 3.4548 | 11850 | - | 0.4235 |
| 3.4694 | 11900 | - | 0.4235 |
| 3.4840 | 11950 | - | 0.4235 |
| 3.4985 | 12000 | 0.0 | 0.4235 |
| 3.5131 | 12050 | - | 0.4235 |
| 3.5277 | 12100 | - | 0.4235 |
| 3.5423 | 12150 | - | 0.4235 |
| 3.5569 | 12200 | - | 0.4235 |
| 3.5714 | 12250 | - | 0.4235 |
| 3.5860 | 12300 | - | 0.4235 |
| 3.6006 | 12350 | - | 0.4235 |
| 3.6152 | 12400 | - | 0.4235 |
| 3.6297 | 12450 | - | 0.4235 |
| 3.6443 | 12500 | 0.0 | 0.4235 |
| 3.6589 | 12550 | - | 0.4235 |
| 3.6735 | 12600 | - | 0.4235 |
| 3.6880 | 12650 | - | 0.4235 |
| 3.7026 | 12700 | - | 0.4235 |
| 3.7172 | 12750 | - | 0.4235 |
| 3.7318 | 12800 | - | 0.4235 |
| 3.7464 | 12850 | - | 0.4235 |
| 3.7609 | 12900 | - | 0.4235 |
| 3.7755 | 12950 | - | 0.4235 |
| 3.7901 | 13000 | 0.0 | 0.4235 |
| 3.8047 | 13050 | - | 0.4235 |
| 3.8192 | 13100 | - | 0.4235 |
| 3.8338 | 13150 | - | 0.4235 |
| 3.8484 | 13200 | - | 0.4235 |
| 3.8630 | 13250 | - | 0.4235 |
| 3.8776 | 13300 | - | 0.4235 |
| 3.8921 | 13350 | - | 0.4235 |
| 3.9067 | 13400 | - | 0.4235 |
| 3.9213 | 13450 | - | 0.4235 |
| 3.9359 | 13500 | 0.0 | 0.4235 |
| 3.9504 | 13550 | - | 0.4235 |
| 3.9650 | 13600 | - | 0.4235 |
| 3.9796 | 13650 | - | 0.4235 |
| 3.9942 | 13700 | - | 0.4235 |
| 4.0 | 13720 | - | 0.4235 |
| 4.0087 | 13750 | - | 0.4235 |
| 4.0233 | 13800 | - | 0.4235 |
| 4.0379 | 13850 | - | 0.4235 |
| 4.0525 | 13900 | - | 0.4235 |
| 4.0671 | 13950 | - | 0.4235 |
| 4.0816 | 14000 | 0.0 | 0.4236 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
Snowflake/snowflake-arctic-embed-l