jsuheb's picture
Upload folder using huggingface_hub
ac9a103 verified
---
license: apache-2.0
base_model:
- allenai/Olmo-3-7B
- allenai/Olmo-3-7B-Instruct
- allenai/Olmo-3-7B-Think
- allenai/Olmo-3-7B-Think-SFT
- allenai/Olmo-3-7B-Think-DPO
- allenai/Olmo-3-7B-RL-Zero-IF
- allenai/Olmo-3-7B-RL-Zero-Math
- allenai/Olmo-3-7B-RL-Zero-Code
- allenai/Olmo-3-7B-RL-Zero-Mix
tags:
- moe
- frankenmoe
- merge
- mergekit
- lazymergekit
- allenai/Olmo-3-7B
- allenai/Olmo-3-7B-Instruct
- allenai/Olmo-3-7B-Think
- allenai/Olmo-3-7B-Think-SFT
- allenai/Olmo-3-7B-Think-DPO
- allenai/Olmo-3-7B-RL-Zero-IF
- allenai/Olmo-3-7B-RL-Zero-Math
- allenai/Olmo-3-7B-RL-Zero-Code
- allenai/Olmo-3-7B-RL-Zero-Mix
---
# olmo3-7b-slerp
olmo3-7b-slerp is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing):
* [allenai/Olmo-3-7B](https://huggingface.co/allenai/Olmo-3-7B)
* [allenai/Olmo-3-7B-Instruct](https://huggingface.co/allenai/Olmo-3-7B-Instruct)
* [allenai/Olmo-3-7B-Think](https://huggingface.co/allenai/Olmo-3-7B-Think)
* [allenai/Olmo-3-7B-Think-SFT](https://huggingface.co/allenai/Olmo-3-7B-Think-SFT)
* [allenai/Olmo-3-7B-Think-DPO](https://huggingface.co/allenai/Olmo-3-7B-Think-DPO)
* [allenai/Olmo-3-7B-RL-Zero-IF](https://huggingface.co/allenai/Olmo-3-7B-RL-Zero-IF)
* [allenai/Olmo-3-7B-RL-Zero-Math](https://huggingface.co/allenai/Olmo-3-7B-RL-Zero-Math)
* [allenai/Olmo-3-7B-RL-Zero-Code](https://huggingface.co/allenai/Olmo-3-7B-RL-Zero-Code)
* [allenai/Olmo-3-7B-RL-Zero-Mix](https://huggingface.co/allenai/Olmo-3-7B-RL-Zero-Mix)
## 🧩 Configuration
```yaml
slices:
- sources:
- model: allenai/Olmo-3-7B
layer_range: [0, 32]
- model: allenai/Olmo-3-7B-Instruct
layer_range: [0, 32]
- model: allenai/Olmo-3-7B-Think
layer_range: [0, 32]
- model: allenai/Olmo-3-7B-Think-SFT
layer_range: [0, 32]
- model: allenai/Olmo-3-7B-Think-DPO
layer_range: [0, 32]
- model: allenai/Olmo-3-7B-RL-Zero-IF
layer_range: [0, 32]
- model: allenai/Olmo-3-7B-RL-Zero-Math
layer_range: [0, 32]
- model: allenai/Olmo-3-7B-RL-Zero-Code
layer_range: [0, 32]
- model: allenai/Olmo-3-7B-RL-Zero-Mix
base_model: allenai/Olmo-3-7B
experts:
- source_model: allenai/Olmo-3-7B
weight: 0.2
- source_model: allenai/Olmo-3-7B-Instruct
weight: 0.1
- source_model: allenai/Olmo-3-7B-Think
weight: 0.1
- source_model: allenai/Olmo-3-7B-Think-SFT
weight: 0.1
- source_model: allenai/Olmo-3-7B-Think-DPO
weight: 0.1
- source_model: allenai/Olmo-3-7B-RL-Zero-IF
weight: 0.1
- source_model: allenai/Olmo-3-7B-RL-Zero-Math
weight: 0.1
- source_model: allenai/Olmo-3-7B-RL-Zero-Code
weight: 0.1
- source_model: allenai/Olmo-3-7B-RL-Zero-Mix
weight: 0.1
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
merge_type: slerp
dtype: bfloat16
layer_range: [0, 32]
```
## 💻 Usage
```python
!pip install -qU transformers bitsandbytes accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "jsuheb/olmo3-7b-slerp"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True},
)
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```