Avar - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on Avar Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
π Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Morphological Analysis (Experimental)
- 7. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.628x | 3.63 | 0.0828% | 245,293 |
| 16k | 4.030x | 4.03 | 0.0919% | 220,825 |
| 32k | 4.383x | 4.39 | 0.1000% | 203,018 |
| 64k | 4.685x π | 4.69 | 0.1069% | 189,944 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: 19-Π°Π±ΠΈΠ»Π΅Π± ΠΠΊΡΡΠ±Ρ β Π³ΡΠ΅Π³ΠΎΡΠΈΠ°Π½ΠΈΡΠ± ΠΊΠ°Π»Π΅Π½Π΄Π°ΡΠ°Π»Π΄Π° ΡΠ΅ΠΊΡΠΎΠ½ ΠΊΡΠΎ (Π²ΠΈΡΠΎΠΊΠΎΡΠ½ΠΈΡΠ± ΡΠΎΠ½Π°Π»Ρ β ΡΠ²...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | β 1 9 - Π°Π±ΠΈΠ»Π΅Π± βΠΎΠΊΡΡΠ±Ρ ββ βΠ³ΡΠ΅Π³ΠΎΡΠΈΠ°Π½ΠΈΡΠ± βΠΊΠ°Π»Π΅Π½Π΄Π°ΡΠ°Π»Π΄Π° βΡΠ΅ΠΊΡΠΎΠ½ ... (+18 more) |
28 |
| 16k | β 1 9 - Π°Π±ΠΈΠ»Π΅Π± βΠΎΠΊΡΡΠ±Ρ ββ βΠ³ΡΠ΅Π³ΠΎΡΠΈΠ°Π½ΠΈΡΠ± βΠΊΠ°Π»Π΅Π½Π΄Π°ΡΠ°Π»Π΄Π° βΡΠ΅ΠΊΡΠΎΠ½ ... (+18 more) |
28 |
| 32k | β 1 9 - Π°Π±ΠΈΠ»Π΅Π± βΠΎΠΊΡΡΠ±Ρ ββ βΠ³ΡΠ΅Π³ΠΎΡΠΈΠ°Π½ΠΈΡΠ± βΠΊΠ°Π»Π΅Π½Π΄Π°ΡΠ°Π»Π΄Π° βΡΠ΅ΠΊΡΠΎΠ½ ... (+18 more) |
28 |
| 64k | β 1 9 - Π°Π±ΠΈΠ»Π΅Π± βΠΎΠΊΡΡΠ±Ρ ββ βΠ³ΡΠ΅Π³ΠΎΡΠΈΠ°Π½ΠΈΡΠ± βΠΊΠ°Π»Π΅Π½Π΄Π°ΡΠ°Π»Π΄Π° βΡΠ΅ΠΊΡΠΎΠ½ ... (+18 more) |
28 |
Sample 2: ΠΠΈΠ½ΠΊΡ ΡΠ³ΠΈ ΠΡΠ°Π½Π°ΠΌΠ°Π³Σ (Π»Π°ΡΠΈΠ½Π°Π·ΡΠ» ΠΌΠ°ΡΣΠ°Π»Π΄Π° bulla; Bullae) β Π³ΣΠ°Π΄Π°ΠΌΠ°ΡΡΠ» Π»Π°Π³Π°-ΡΠ΅ΡΡ
. Π»...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βΠΏ ΠΈΠ½ ΠΊΡ βΡΠ³ΠΈ βΠ³ΡΠ°Π½ Π°ΠΌ Π°Π³Σ β( Π»Π°ΡΠΈΠ½Π°Π·ΡΠ» βΠΌΠ°ΡΣΠ°Π»Π΄Π° ... (+18 more) |
28 |
| 16k | βΠΏΠΈΠ½ ΠΊΡ βΡΠ³ΠΈ βΠ³ΡΠ°Π½ Π°ΠΌΠ°Π³Σ β( Π»Π°ΡΠΈΠ½Π°Π·ΡΠ» βΠΌΠ°ΡΣΠ°Π»Π΄Π° βb ul ... (+15 more) |
25 |
| 32k | βΠΏΠΈΠ½ ΠΊΡ βΡΠ³ΠΈ βΠ³ΡΠ°Π½ Π°ΠΌΠ°Π³Σ β( Π»Π°ΡΠΈΠ½Π°Π·ΡΠ» βΠΌΠ°ΡΣΠ°Π»Π΄Π° βb ul ... (+14 more) |
24 |
| 64k | βΠΏΠΈΠ½ΠΊΡ βΡΠ³ΠΈ βΠ³ΡΠ°Π½Π°ΠΌΠ°Π³Σ β( Π»Π°ΡΠΈΠ½Π°Π·ΡΠ» βΠΌΠ°ΡΣΠ°Π»Π΄Π° βb ul la ; ... (+11 more) |
21 |
Sample 3: 22-Π°Π±ΠΈΠ»Π΅Π± ΠΠΊΡΡΠ±Ρ β Π³ΡΠ΅Π³ΠΎΡΠΈΠ°Π½ΠΈΡΠ± ΠΊΠ°Π»Π΅Π½Π΄Π°ΡΠ°Π»Π΄Π° ΡΠ΅ΠΊΡΠΎΠ½ ΠΊΡΠΎ (Π²ΠΈΡΠΎΠΊΠΎΡΠ½ΠΈΡΠ± ΡΠΎΠ½Π°Π»Ρ β ΡΠ²...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | β 2 2 - Π°Π±ΠΈΠ»Π΅Π± βΠΎΠΊΡΡΠ±Ρ ββ βΠ³ΡΠ΅Π³ΠΎΡΠΈΠ°Π½ΠΈΡΠ± βΠΊΠ°Π»Π΅Π½Π΄Π°ΡΠ°Π»Π΄Π° βΡΠ΅ΠΊΡΠΎΠ½ ... (+18 more) |
28 |
| 16k | β 2 2 - Π°Π±ΠΈΠ»Π΅Π± βΠΎΠΊΡΡΠ±Ρ ββ βΠ³ΡΠ΅Π³ΠΎΡΠΈΠ°Π½ΠΈΡΠ± βΠΊΠ°Π»Π΅Π½Π΄Π°ΡΠ°Π»Π΄Π° βΡΠ΅ΠΊΡΠΎΠ½ ... (+18 more) |
28 |
| 32k | β 2 2 - Π°Π±ΠΈΠ»Π΅Π± βΠΎΠΊΡΡΠ±Ρ ββ βΠ³ΡΠ΅Π³ΠΎΡΠΈΠ°Π½ΠΈΡΠ± βΠΊΠ°Π»Π΅Π½Π΄Π°ΡΠ°Π»Π΄Π° βΡΠ΅ΠΊΡΠΎΠ½ ... (+18 more) |
28 |
| 64k | β 2 2 - Π°Π±ΠΈΠ»Π΅Π± βΠΎΠΊΡΡΠ±Ρ ββ βΠ³ΡΠ΅Π³ΠΎΡΠΈΠ°Π½ΠΈΡΠ± βΠΊΠ°Π»Π΅Π½Π΄Π°ΡΠ°Π»Π΄Π° βΡΠ΅ΠΊΡΠΎΠ½ ... (+18 more) |
28 |
Key Findings
- Best Compression: 64k achieves 4.685x compression
- Lowest UNK Rate: 8k with 0.0828% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|---|
| 2-gram | Word | 3,089 | 11.59 | 6,523 | 23.7% | 56.2% |
| 2-gram | Subword | 424 π | 8.73 | 4,120 | 58.0% | 96.7% |
| 3-gram | Word | 2,775 | 11.44 | 6,745 | 26.4% | 58.9% |
| 3-gram | Subword | 3,361 | 11.71 | 28,903 | 23.9% | 63.4% |
| 4-gram | Word | 8,260 | 13.01 | 18,126 | 17.8% | 39.8% |
| 4-gram | Subword | 15,393 | 13.91 | 119,191 | 12.7% | 37.5% |
| 5-gram | Word | 7,813 | 12.93 | 15,673 | 16.8% | 39.4% |
| 5-gram | Subword | 38,531 | 15.23 | 222,134 | 8.4% | 26.5% |
Top 5 N-grams by Size
2-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | ΡΠΎΡΡ Π±ΡΠ³ΠΎ |
710 |
| 2 | Π³Π΅ΠΎΠ³ΡΠ°ΡΠΈΡ ΡΠΎΡΡ |
660 |
| 3 | ΠΌΡΡ
ΡΠ°Π»ΡΡΠ» ΡΠΎΡΠ°Π±ΠΈ |
578 |
| 4 | Π±ΡΠ³ΠΎ ΠΌΡΡ
ΡΠ°Π»ΡΡΠ» |
530 |
| 5 | ΠΌΡΡ
ΡΠ°Π»ΡΡΠ» ΡΠΎΡΡ |
523 |
3-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π³Π΅ΠΎΠ³ΡΠ°ΡΠΈΡ ΡΠΎΡΡ Π±ΡΠ³ΠΎ |
645 |
| 2 | ΡΠΎΡΡ Π±ΡΠ³ΠΎ ΠΌΡΡ
ΡΠ°Π»ΡΡΠ» |
523 |
| 3 | Π»ΡΡΠ³ΡΠ° Π±Π°Ρ
ΡΠΈΠ½Π°Π» Π³ΡΠ°ΡΡΠ½Π° |
368 |
| 4 | Π±Π°Ρ
ΡΠΈΠ½Π°Π» Π³ΡΠ°ΡΡΠ½Π° Ρ
Π²Π°Π½Π° |
358 |
| 5 | Π±Π°ΠΉΡΠ°ΠΌΠ°Π» Π»ΡΡΠ³ΡΠ° Π±Π°Ρ
ΡΠΈΠ½Π°Π» |
353 |
4-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π³Π΅ΠΎΠ³ΡΠ°ΡΠΈΡ ΡΠΎΡΡ Π±ΡΠ³ΠΎ ΠΌΡΡ
ΡΠ°Π»ΡΡΠ» |
513 |
| 2 | Π»ΡΡΠ³ΡΠ° Π±Π°Ρ
ΡΠΈΠ½Π°Π» Π³ΡΠ°ΡΡΠ½Π° Ρ
Π²Π°Π½Π° |
358 |
| 3 | Π±Π°ΠΉΡΠ°ΠΌΠ°Π» Π»ΡΡΠ³ΡΠ° Π±Π°Ρ
ΡΠΈΠ½Π°Π» Π³ΡΠ°ΡΡΠ½Π° |
352 |
| 4 | ΠΊΡΠΎ Π±Π°ΠΉΡΠ°ΠΌΠ°Π» Π»ΡΡΠ³ΡΠ° Π±Π°Ρ
ΡΠΈΠ½Π°Π» |
351 |
| 5 | Π±Π°Ρ
ΡΠΈΠ½Π°Π» Π³ΡΠ°ΡΡΠ½Π° Ρ
Π²Π°Π½Π° ΠΈΡΠ°ΡΠ°Π±ΠΈ |
349 |
5-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | ΠΊΡΠΎ Π±Π°ΠΉΡΠ°ΠΌΠ°Π» Π»ΡΡΠ³ΡΠ° Π±Π°Ρ
ΡΠΈΠ½Π°Π» Π³ΡΠ°ΡΡΠ½Π° |
350 |
| 2 | Π»ΡΡΠ³ΡΠ° Π±Π°Ρ
ΡΠΈΠ½Π°Π» Π³ΡΠ°ΡΡΠ½Π° Ρ
Π²Π°Π½Π° ΠΈΡΠ°ΡΠ°Π±ΠΈ |
349 |
| 3 | Π±Π°ΠΉΡΠ°ΠΌΠ°Π» Π»ΡΡΠ³ΡΠ° Π±Π°Ρ
ΡΠΈΠ½Π°Π» Π³ΡΠ°ΡΡΠ½Π° Ρ
Π²Π°Π½Π° |
348 |
| 4 | Π΄Π΅ΠΌΠΎΠ³ΡΠ°ΡΠΈΡ ΠΊΠΊΠΎΠ»Π° ΠΌΠΎΠ½ΠΎΡΡΠ½ΠΈΠΊΠΈΡΠ± Π°Π²Π°Ρ ΡΠΎΡΡΠ»ΡΡΠ½ |
305 |
| 5 | Π³Π΅ΠΎΠ³ΡΠ°ΡΠΈΡ ΡΠΎΡΡ Π±ΡΠ³ΠΎ ΠΌΡΡ
ΡΠ°Π»ΡΡΠ» ΠΌΠ°ΡΠΊΠ°Π· |
279 |
2-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π° Π» |
85,368 |
| 2 | Π» _ |
64,955 |
| 3 | Π» Ρ |
53,561 |
| 4 | Π° _ |
52,853 |
| 5 | Ρ Π» |
50,828 |
3-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Ρ Π» _ |
34,266 |
| 2 | Π» Ρ Ρ |
31,682 |
| 3 | Ρ Ρ Π» |
26,429 |
| 4 | Π° Π» Ρ |
24,583 |
| 5 | _ Π³ Ρ |
22,014 |
4-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π» Ρ Ρ Π» |
25,035 |
| 2 | Ρ Ρ Π» _ |
22,571 |
| 3 | Π° Π» Ρ Ρ |
16,980 |
| 4 | Π° Π» Π΄ Π° |
11,684 |
| 5 | _ Π³ Ρ Π΅ |
10,931 |
5-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | Π» Ρ Ρ Π» _ |
22,224 |
| 2 | Π° Π» Ρ Ρ Π» |
15,591 |
| 3 | Ρ Π» Ρ Ρ Π» |
7,776 |
| 4 | Π° Π» Π΄ Π° _ |
7,381 |
| 5 | _ Π± Ρ Π³ ΠΎ |
5,843 |
Key Findings
- Best Perplexity: 2-gram (subword) with 424
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~26% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|---|
| 1 | Word | 0.6594 | 1.579 | 3.57 | 90,954 | 34.1% |
| 1 | Subword | 1.1677 | 2.247 | 9.26 | 1,148 | 0.0% |
| 2 | Word | 0.1264 | 1.092 | 1.22 | 323,475 | 87.4% |
| 2 | Subword | 0.9998 | 2.000 | 5.69 | 10,625 | 0.0% |
| 3 | Word | 0.0288 | 1.020 | 1.04 | 392,122 | 97.1% |
| 3 | Subword | 0.7938 | 1.734 | 3.67 | 60,414 | 20.6% |
| 4 | Word | 0.0121 π | 1.008 | 1.02 | 406,770 | 98.8% |
| 4 | Subword | 0.5607 | 1.475 | 2.33 | 221,366 | 43.9% |
Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
Context Size 1:
Π²Π° ΠΈΡΠΏΠ°Π½ ΡΠΎΠ½ΠΎΠ»ΠΎΠ³ΠΈΡ ΡΠΎΠ³ΠΈΠ΄Π°Π» ΡΡΡΠΊΠΈΡΠ» ΠΌΠ°ΡΣΠ°Π· ΡΠ°Π½Π³ΠΎ ΡΠ°Π³ΡΡΠΈΡΠ± Π³ΣΡΠΌΡΡ ΡΡΠ°Π²Π°Π»Π΄Π° Ρ ΡΡΡ Π°ΡΠ°Π» ΡΠ΅ΠΎΠ΄Π°Π»ΠΈΠ·ΠΌ ΡΠΎΡΠΈΡΠΌ Ρ...Π±ΡΠ³ΠΎ ΡΠ΅ΡΠΏΡΠ±Π»ΠΈΠΊΠ°Π»ΡΡΠ» ΡΡΡΡΠ» ΠΌΡΡ Ρ Π±ΡΠ³ΠΎ ΡΠ°ΡΡΡΠΈΡΠ± ΡΠΈΠΊΡΠΊΡΠ΅Π½Π°Π»Π΄Π°Π»ΡΡΠ½ Π³ΡΠ°Π±ΡΡΠ°Π± Π±ΠΈΡΡΠ½ ΡΠ΅ Π± Π³ΡΡΠ·ΠΈΠ½ΡΠΊΠΈΠΉ Π°Π»ΡΠ°Π²ΠΈΡ...Π±ΡΠ³Π΅Π± ΠΌΡΠ½ΠΈΡΠΈΠΏΠ°Π»ΠΈΡΠ± Π³ΣΡΡΣΠΈ Π³ΡΠΎΡΠ»ΣΠ΅ ΡΠ°ΡΡΠ½Π° ΡΣΡΠΆΡΡΠ»Π΄Π° Ρ ΡΡΡ Π°ΡΠ°Π» ΡΠΎΠ³ΠΈΠ΄Π°Π» ΠΊΠΈΠ½Π°Π»Π³ΠΎ Ρ Π²Π°Π½Π° ΠΈΡΠ°ΡΠ°Π±ΠΈ ΠΌΡΠ³ΡΡΣΠ²Π°ΡΠ»...
Context Size 2:
ΡΠΎΡΡ Π±ΡΠ³ΠΎ ΠΌΡΡ ΡΠ°Π»ΡΡΠ» ΠΌΠ°ΡΠΊΠ°Π· Π»ΡΠ°ΡΠ°ΡΣΠ°ΡΠ° 22 ΠΊΠΌ Π»Ρ ΠΆΠ°Π½ΡΠ±ΠΈΡΠ± Π±Π°ΠΊΡΠ±Π°ΠΊΠΊΡΠ΄Π΅Ρ ΡΠ½ ΡΠ°Π»ΡΠ΄Π°Π» Π³ΡΡΡΠΌΠ°ΡΣΠ°ΡΠ° 968 ΠΌΠ΅ΡΡΠ°...Π³Π΅ΠΎΠ³ΡΠ°ΡΠΈΡ ΡΠΎΡΡ Π±ΡΠ³ΠΎ ΠΌΡΡ ΡΠ°Π»ΡΡΠ» ΠΌΠ°ΡΠΊΠ°Π· Π»ΡΠ°ΡΠ°ΡΣΠ°ΡΠ° 0 5 41 9 12 Π³ΡΡΠΆΠΈΡΠ» 617 401 253 10 0Π±ΡΠ³ΠΎ ΠΌΡΡ ΡΠ°Π»ΡΡΠ» ΡΠ΅Π½ΡΠ΅Ρ ΡΡΠΊΠ°ΡΠ°Ρ ΡΠ°Π»Π΄Π°ΡΠ° Π±Π°ΠΊΡΡΣΠ΅ΡΡ ΡΡΠ΄Π΅Ρ ΡΠ½ Π΄Π΅ΠΌΠΎΠ³ΡΠ°ΡΠΈΡ ΡΠ΅ΡΠ΅ΡΠ΅Π½ΡΠ°Π» ΠΌΡΡ ΡΠ°Π»ΡΡΠ» ΡΠΎΡΠ°Π±ΠΈ ΠΌΡΡ Ρ ΡΠΎ...
Context Size 3:
Π³Π΅ΠΎΠ³ΡΠ°ΡΠΈΡ ΡΠΎΡΡ Π±ΡΠ³ΠΎ ΠΌΡΡ ΡΠ°Π»ΡΡΠ» ΠΌΠ°ΡΠΊΠ°Π· Π»ΡΠ°ΡΠ°ΡΣΠ°ΡΠ° 22 ΠΊΠΌ Π°Π»Ρ Π΄Π΅ΠΌΠΎΠ³ΡΠ°ΡΠΈΡ ΠΊΠΊΠΎΠ»Π° ΠΌΠΎΠ½ΠΎΡΡΠ½ΠΈΠΊΠΈΡΠ± Π°Π²Π°Ρ ΡΠΎΡΡΠ»ΡΡ...ΡΠΎΡΡ Π±ΡΠ³ΠΎ ΠΌΡΡ ΡΠ°Π»ΡΡΠ» ΡΠ΅Π½ΡΠ΅Ρ ΡΡΠΊΠ°ΡΠ°Ρ ΡΠ°Π»Π΄Π°ΡΠ° ΠΆΠ°Π½ΡΠ±ΠΈΡΠ± Π±Π°ΠΊΡΡΣΠ΅ΡΡ ΡΡΠ΄Π΅Ρ ΡΠ½ ΡΠ°Π»ΡΠ΄Π°Π» Π³ΡΡΡΠΌΠ°ΡΣΠ°ΡΠ° Π±ΠΎΡΡ Π°Π»ΡΠΈ Π±ΡΠ³...Π»ΡΡΠ³ΡΠ° Π±Π°Ρ ΡΠΈΠ½Π°Π» Π³ΡΠ°ΡΡΠ½Π° Ρ Π²Π°Π½Π° ΠΈΡΠ°ΡΠ°Π±ΠΈ ΠΌΡΠ³ΡΡΣΠ²Π°ΡΠ» Π³Ρ Π±Π°Π»Π°Π³ΡΠ΅ ΡΡΠ°ΠΊΡΠ°Ρ Π°Π΄Π°Π±ΠΈΡΡ ΡΠ°ΠΉΠΏΠ°Π±ΠΈ ΠΈΠ·Π΄Π°Π½ΠΈΡΠ»
Context Size 4:
Π³Π΅ΠΎΠ³ΡΠ°ΡΠΈΡ ΡΠΎΡΡ Π±ΡΠ³ΠΎ ΠΌΡΡ ΡΠ°Π»ΡΡΠ» ΠΌΠ°ΡΠΊΠ°Π· Π»ΡΠ°ΡΠ°ΡΣΠ°ΡΠ° 5 ΠΊΠΌ Π°Π»Ρ ΡΠΈΠΌΠ°Π»Π°Π»ΠΈΡΠ±Π³ΠΈΠ½ Π±Π°ΠΊΡΠ±Π°ΠΊΠΊΡΠ΄Π΅Ρ ΡΠ½ Π°Π²Π°ΡΠ³ΣΠΎΡΠ°Π»ΡΡΠ» ...Π±Π°ΠΉΡΠ°ΠΌΠ°Π» Π»ΡΡΠ³ΡΠ° Π±Π°Ρ ΡΠΈΠ½Π°Π» Π³ΡΠ°ΡΡΠ½Π° Ρ Π²Π°Π½Π° ΠΈΡΠ°ΡΠ°Π±ΠΈ ΠΌΡΠ³ΡΡΣΠ²Π°ΡΠ» Π³Ρ Π±Π°Π»Π°Π³ΡΠ΅ΠΊΡΠΎ Π±Π°ΠΉΡΠ°ΠΌΠ°Π» Π»ΡΡΠ³ΡΠ° Π±Π°Ρ ΡΠΈΠ½Π°Π» Π³ΡΠ°ΡΡΠ½Π° Ρ Π²Π°Π½Π° ΠΈΡΠ°ΡΠ°Π±ΠΈ ΠΌΡΠ³ΡΡΣΠ²Π°ΡΠ» Π³Ρ Π±Π°Π»Π°Π³ΡΠ΅
Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
Context Size 1:
_ΡΡΠ²Π°_β_1_Π²Π°Π΄Π°ΡΠ΅Π°Π½._ΠΈΡ_Π²._ΡΣΠ°Π²Π°ΡΠ»Π΄Π°ΡΣΠΈΡΠ»ΡΡΡ ΡΡΡΠΊ;
Context Size 2:
Π°Π»Π΄Π°ΡΡΠΈΡΠ±_6_ΠΊΠΈΡΠ±ΡΠ»_Π΄ΠΆΠΈΠ±Π°ΡΣΠ°Π½ΠΈΡΠΊΠ΅Π°ΠΏΠ»ΡΡΠ»_Π±Π°ΠΊΡΠ³ΠΎ_ΡΠ°Ρ ΡΠ΅
Context Size 3:
ΡΠ»_Π½Π°ΠΌΠ΅Π½_Π³ΡΠ΅Π±_ΡΠ°ΡΠ°Π»ΡΡΠ»Π³ΠΎ_ΡΠΏΡΠ°Π²Π΅Π½ΡΠΈΡ)ΡΡΠ»_ΡΠ³ΠΈ_ΠΏΠ΅ΡΠ°ΡΠΈΠΈ_Β«Π³
Context Size 4:
Π»ΡΡΠ»_Π°ΡΡΠΈΠ²_Π³ΡΠ΅Π»_ΠΊΠΊΠ²ΡΡΠ»_ΠΊΡΠ²Π°Ρ_Π³Π΅ΠΎΠ³ΡΠ°ΡΠΈΡΠ°Π»ΡΡΠ»Π°Π»Π΄Π΅._Π±ΠΎΡΡ Π°Π»ΡΡ
Key Findings
- Best Predictability: Context-4 (word) with 98.8% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (221,366 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 34,315 |
| Total Tokens | 413,611 |
| Mean Frequency | 12.05 |
| Median Frequency | 3 |
| Frequency Std Dev | 77.17 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | Π²Π° | 7,138 |
| 2 | Π±ΡΠ³ΠΎ | 5,684 |
| 3 | Π±ΡΠ³Π΅Π± | 2,903 |
| 4 | ΠΊΠΊΠΎΠ»Π° | 2,872 |
| 5 | ΡΠΎΡΡ | 2,838 |
| 6 | ΠΌΡΡ ΡΠ°Π»ΡΡΠ» | 2,671 |
| 7 | Π³ΡΠ΅Π± | 2,178 |
| 8 | ΡΠΎΡΠ΄Π°Π» | 1,902 |
| 9 | the | 1,812 |
| 10 | ΡΠΎ | 1,800 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | ΡΡΠΊΡΡΠ°ΠΌΠ°Ρ ΡΠΈ | 2 |
| 2 | ΠΊΠΎΠ½ΡΠΈΠ½ΡΡΠΌΠ°Π»Π΄Π΅ | 2 |
| 3 | ΠΊΡΡΠ»Π΅ΡΣΠΌΠ°Π³ΠΈ | 2 |
| 4 | Π³ΡΠ°ΡΠΊΣΠ°ΡΡΠ½ΠΈΠ± | 2 |
| 5 | ΠΌΠ°Ρ ΣΠ°ΡΠ³ΠΈ | 2 |
| 6 | ΠΏΠΈΠ»ΠΈΠ±Ρ ΠΈΡΠ°Π»ΡΡΠ» | 2 |
| 7 | Π·Π°ΠΏΠΎΠ²Π΅Π΄Π½ΠΈΠΊΠ°Π»Π΄Π° | 2 |
| 8 | ΠΏΠΈΠ»ΠΈΠ±Ρ ΠΈΡ | 2 |
| 9 | Π»ΡΠ°Π»ΡΠ°Π΄ΡΠ» | 2 |
| 10 | Ρ ΣΠ°Π½ΡΣΠΈ | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 0.9572 |
| RΒ² (Goodness of Fit) | 0.993745 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 23.1% |
| Top 1,000 | 51.6% |
| Top 5,000 | 74.2% |
| Top 10,000 | 83.6% |
Key Findings
- Zipf Compliance: RΒ²=0.9937 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 23.1% of corpus
- Long Tail: 24,315 words needed for remaining 16.4% coverage
5. Word Embeddings Evaluation
5.1 Cross-Lingual Alignment
5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|---|---|---|---|---|---|
| mono_32d | 32 | 0.8604 | 0.3207 | N/A | N/A |
| mono_64d | 64 | 0.7367 | 0.2711 | N/A | N/A |
| mono_128d | 128 | 0.2721 | 0.2530 | N/A | N/A |
| aligned_32d | 32 | 0.8604 π | 0.3335 | 0.0200 | 0.1400 |
| aligned_64d | 64 | 0.7367 | 0.2791 | 0.0280 | 0.1780 |
| aligned_128d | 128 | 0.2721 | 0.2649 | 0.0820 | 0.2540 |
Key Findings
- Best Isotropy: aligned_32d with 0.8604 (more uniform distribution)
- Semantic Density: Average pairwise similarity of 0.2870. Lower values indicate better semantic separation.
- Alignment Quality: Aligned models achieve up to 8.2% R@1 in cross-lingual retrieval.
- Recommendation: 128d aligned for best cross-lingual performance
6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|---|---|---|---|
| Productivity Index | 5.000 | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | 0.488 | High formulaic/idiomatic content | - |
6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
Productive Prefixes
| Prefix | Examples |
|---|---|
-Π±Π° |
Π±Π°ΡΣΠ°Π»ΡΡΠ΄Π°, Π±Π°ΡΣΠ°, Π±Π°Ρ ΡΠΈΠ½Π°ΡΠΎ |
Productive Suffixes
| Suffix | Examples |
|---|---|
-Π» |
ΡΡΠ±ΡΡΠΎΠΏΠΈΠΊΠΈΡΠ», ΠΊΡΠΌΠΈΠΊΠ°Π», ΡΠΈΡΡΠ°Π»Π΅Π» |
-Π° |
Π»ΡΠ°ΡΠ°ΡΠ°, ΡΡΠ°Π»ΡΠΈΡΠ»Π΄Π°, Π°Π½Π°ΡΠΎΠ»ΠΈΡΠ»Π΄Π°ΡΠ° |
-ΡΠ» |
Π°Π³ΡΠ»ΡΠ»ΡΠΈΡΠ»ΡΡΠ», ΠΊΠΈΠΏΡΠ°Π»ΡΡΠ», ΡΡΠ°ΡΡΠ°Π»ΡΡΠ» |
-ΡΡΠ» |
Π°Π³ΡΠ»ΡΠ»ΡΠΈΡΠ»ΡΡΠ», ΠΊΠΈΠΏΡΠ°Π»ΡΡΠ», ΡΡΠ°ΡΡΠ°Π»ΡΡΠ» |
-Π»ΡΡΠ» |
Π°Π³ΡΠ»ΡΠ»ΡΠΈΡΠ»ΡΡΠ», ΠΊΠΈΠΏΡΠ°Π»ΡΡΠ», ΡΡΠ°ΡΡΠ°Π»ΡΡΠ» |
-Π΄Π° |
ΡΡΠ°Π»ΡΠΈΡΠ»Π΄Π°, ΡΠ΅ΠΊΡΡΠ°Π·Π΄Π°, Π±Π°ΡΣΠ°Π»ΡΡΠ΄Π° |
-Π°Π» |
ΠΊΡΠΌΠΈΠΊΠ°Π», ΡΡΠ°ΡΠ΅Π³Π°Π», ΡΜΡΠ°Π» |
-Π³ΠΈ |
ΡΠ°Ρ ΡΠ°Π³ΡΠ°ΡΠ»ΡΡΠ½Π³ΠΈ, ΡΠ³ΠΈ, ΡΠΎΡΡΠΈΡΠ³ΠΈ |
6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|---|---|---|---|
Π°Π»ΡΡ |
1.88x | 101 contexts | Π°Π»ΡΡΠ», Π΄Π°Π»ΡΡΠ½, ΠΌΠ°Π»ΡΡΠ½ |
ΡΠ»ΡΡ |
2.05x | 41 contexts | ΡΠ»ΡΡΠ», ΡΠ»ΡΡΠ½ΠΈ, Π°ΡΠ»ΡΡΠ» |
ΡΠ°Π±Ρ |
2.11x | 29 contexts | Π³ΡΠ°Π±Ρ, Π³ΡΠ°Π±ΡΠ½, ΠΊΡΠ°Π±ΡΠ½ |
Π°Π³ΡΠ° |
1.75x | 59 contexts | Π±Π°Π³ΡΠ°, Π΄Π°Π³ΡΠ°, ΡΠ°Π³ΡΠ°Π² |
ΠΈΡΠ»Ρ |
1.85x | 36 contexts | Ρ ΠΈΠΌΠΈΡΠ»Ρ, Π±ΠΈΡΠ»ΡΡΠ», Π°ΡΠΌΠΈΡΠ»Ρ |
Π°Π½Π°Π» |
1.48x | 70 contexts | ΠΊΠ°Π½Π°Π», Ρ Π°Π½Π°Π», Π΄Π°Π½Π°Π» |
ΠΈΡΠ»Π΄ |
1.69x | 36 contexts | ΡΠΈΡΠ»Π΄Π°, Π°Π·ΠΈΡΠ»Π΄Π΅, Π°Π·ΠΈΡΠ»Π΄Π° |
ΠΎΠ³ΡΠ° |
1.87x | 22 contexts | Π³Π΅ΠΎΠ³ΡΠ°Ρ, ΡΠΎΡΠΎΠ³ΡΠ°Ρ, ΡΡΠ½ΠΎΠ³ΡΠ°Ρ |
Π°Π·Π΄Π° |
1.67x | 31 contexts | Π³ΡΠ°Π·Π΄Π°, ΠΈΡΠ°Π·Π΄Π°, ΡΠ°Π·Π΄Π°Π½ |
Π½Π°Π»Π΄ |
1.64x | 31 contexts | ΠΈΠ½Π°Π»Π΄Π°, Π΄ΠΎΠ½Π°Π»Π΄, ΠΈΠ½Π°Π»Π΄Π΅ |
Π³ΡΠΎΡ |
2.15x | 13 contexts | Π³ΡΠΎΡΠ»Ρ, Π³ΡΠΎΡΠ»Ρ, Π³ΡΠΎΡΠ»Σ |
Π»Π΄Π°Ρ |
2.01x | 15 contexts | Π»Π΄Π°ΡΠ°, ΡΠ»Π΄Π°ΡΠ°, Π°Π»Π΄Π°ΡΠ° |
6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
| Prefix | Suffix | Frequency | Examples |
|---|---|---|---|
-Π±Π° |
-Π» |
36 words | Π±Π°Π³ΡΠ°Π΄ΡΡΠ°ΡΡΠ», Π±Π°ΠΊΡΡΣΠ΅ΡΡ ΡΡΠ» |
-Π±Π° |
-Π° |
34 words | Π±Π°Π³ΡΠ°, Π±Π°ΡΣΠ°Π»ΡΠ°Π½Π° |
-Π±Π° |
-ΡΠ» |
17 words | Π±Π°Π³ΡΠ°Π΄ΡΡΠ°ΡΡΠ», Π±Π°ΠΊΡΡΣΠ΅ΡΡ ΡΡΠ» |
-Π±Π° |
-ΡΠ½ |
16 words | Π±Π°Ρ ΡΡΠ½, Π±Π°Ρ ΡΠ±Π°ΠΊΠΊΡΠ΄Π΅Ρ ΡΠ½ |
-Π±Π° |
-Π΄Π° |
16 words | Π±Π°ΡΠ°Π»ΡΡΠ΄Π°, Π±Π°Π»Π°Π·Π΄Π° |
-Π±Π° |
-Π°Π» |
11 words | Π±Π°Ρ ΣΡΠ°Π», Π±Π°ΠΊΡΠ±Π°ΠΊΠΊΡΠ»Π°Π» |
-Π±Π° |
-ΡΡΠ» |
8 words | Π±Π°Π²Π°ΡΠΈΡΠ»ΡΡΠ», Π±Π°ΡΠ°Π»ΠΉΠΎΠ½Π°Π»ΡΡΠ» |
-Π±Π° |
-Π»Π΄Π° |
8 words | Π±Π°Ρ ΡΠΈΡΠ»Π΄Π°, Π±Π°Ρ ΡΠ°Π»Π΄Π° |
-Π±Π° |
-Π³ΠΈ |
6 words | Π±Π°ΠΊΣΠ°Π»ΡΡΠ»Π³ΠΈ, Π±Π°Ρ ΣΠ°ΡΠ·Π°Π±ΠΈΠ³ΠΈ |
-Π±Π° |
-Π»ΡΡΠ» |
6 words | Π±Π°Π²Π°ΡΠΈΡΠ»ΡΡΠ», Π±Π°ΡΠ°Π»ΠΉΠΎΠ½Π°Π»ΡΡΠ» |
6.5 Recursive Morpheme Segmentation
Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).
| Word | Suggested Split | Confidence | Stem |
|---|---|---|---|
| ΠΊΡΡΡΡΠ°Π½Π°Π»Π³ΠΈ | ΠΊΡΡΡΡΠ°Π½-Π°Π»-Π³ΠΈ |
6.0 | ΠΊΡΡΡΡΠ°Π½ |
| Ρ Π°Π½Π°ΡΠ΄Π°Π³ΠΈ | Ρ
Π°Π½Π°Ρ-Π΄Π°-Π³ΠΈ |
6.0 | Ρ
Π°Π½Π°Ρ |
| ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°Π»Π³ΠΈ | ΡΠ»Π΅ΠΌΠ΅Π½Ρ-Π°Π»-Π³ΠΈ |
6.0 | ΡΠ»Π΅ΠΌΠ΅Π½Ρ |
| Π³ΡΠ΅Π»ΡΡΠ»Π³ΠΈ | Π³ΡΠ΅Π»-ΡΡΠ»-Π³ΠΈ |
6.0 | Π³ΡΠ΅Π» |
| Π³ΡΠ°ΡΠΌΠΎΠ½ΠΈΡΠ»Π΄Π° | Π³ΡΠ°ΡΠΌΠΎΠ½ΠΈΡ-Π»Π΄Π° |
4.5 | Π³ΡΠ°ΡΠΌΠΎΠ½ΠΈΡ |
| Π³ΡΠΎΠ»ΠΎΠΊΡΠ³ΠΈ | Π³ΡΠΎΠ»ΠΎΠΊΡ-Π³ΠΈ |
4.5 | Π³ΡΠΎΠ»ΠΎΠΊΡ |
| Ρ ΡΠΎΠ½Π΄Π°ΡΠ΅Π±Π³ΠΈ | Ρ
ΡΠΎΠ½Π΄Π°ΡΠ΅Π±-Π³ΠΈ |
4.5 | Ρ
ΡΠΎΠ½Π΄Π°ΡΠ΅Π± |
| ΡΠ°ΠΉΠΎΠ½Π°Π·ΡΠ» | ΡΠ°ΠΉΠΎΠ½Π°Π·-ΡΠ» |
4.5 | ΡΠ°ΠΉΠΎΠ½Π°Π· |
| Π°ΡΠΊΠ°ΡΠ°Π·Π΄Π° | Π°ΡΠΊΠ°ΡΠ°Π·-Π΄Π° |
4.5 | Π°ΡΠΊΠ°ΡΠ°Π· |
| ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠ°Π³ΠΈ | ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠ°-Π³ΠΈ |
4.5 | ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠ° |
| ΠΏΡΠΎΡΠ΅ΡΡΠ°Π·ΡΠ» | ΠΏΡΠΎΡΠ΅ΡΡΠ°Π·-ΡΠ» |
4.5 | ΠΏΡΠΎΡΠ΅ΡΡΠ°Π· |
| Π½Π°ΡΡΡΠ΄ΠΈΠ½ΠΈΡΠ°Π³ΠΈ | Π½Π°ΡΡΡΠ΄ΠΈΠ½ΠΈΡΠ°-Π³ΠΈ |
4.5 | Π½Π°ΡΡΡΠ΄ΠΈΠ½ΠΈΡΠ° |
| Π±ΡΠ³ΠΈΠ»Π°Π½Π³ΠΈ | Π±ΡΠ³ΠΈΠ»Π°Π½-Π³ΠΈ |
4.5 | Π±ΡΠ³ΠΈΠ»Π°Π½ |
| ΡΠ°Π³ΡΠ°ΡΠ°Π·ΡΠ» | ΡΠ°Π³ΡΠ°ΡΠ°Π·-ΡΠ» |
4.5 | ΡΠ°Π³ΡΠ°ΡΠ°Π· |
| ΠΌΠΈΠ½ΡΠΊΠ°Π»ΡΡΠ» | ΠΌΠΈΠ½ΡΠΊΠ°-Π»ΡΡΠ» |
4.5 | ΠΌΠΈΠ½ΡΠΊΠ° |
6.6 Linguistic Interpretation
Automated Insight: The language Avar shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
Note on Idiomaticity: The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
7. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 64k BPE | Best compression (4.69x) |
| N-gram | 2-gram | Lowest perplexity (424) |
| Markov | Context-4 | Highest predictability (98.8%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) Γ 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
RΒ² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- π Website: wikilangs.org
- π€ Models: huggingface.co/wikilangs
- π Data: wikipedia-monthly
- π€ Author: Omar Kamali
- π€ Sponsor: Featherless AI
Generated by Wikilangs Models Pipeline
Report Date: 2026-01-03 18:29:30



















