Bulgarian - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on Bulgarian Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

πŸ“‹ Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 3.452x 3.45 0.0493% 2,552,470
16k 3.809x 3.81 0.0544% 2,313,214
32k 4.120x 4.12 0.0589% 2,138,945
64k 4.373x πŸ† 4.37 0.0625% 2,015,292

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: Часово отмСстванС UTC-11 сС ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π° Π²: : АмСриканска Π‘Π°ΠΌΠΎΠ°, Атол ΠœΠΈΠ΄ΡƒΠ΅ΠΉ : НиуС ...

Vocab Tokens Count
8k ▁ча сово ▁от мСст Π²Π°Π½Π΅ ▁utc - 1 1 ▁сС ... (+17 more) 27
16k ▁ча сово ▁от мСст Π²Π°Π½Π΅ ▁utc - 1 1 ▁сС ... (+15 more) 25
32k ▁ча сово ▁от мСстванС ▁utc - 1 1 ▁сС ▁използва ... (+13 more) 23
64k ▁часово ▁отмСстванС ▁utc - 1 1 ▁сС ▁използва ▁в : ... (+9 more) 19

Sample 2: Synodontis ouemeensis Π΅ Π²ΠΈΠ΄ Π»ΡŠΡ‡Π΅ΠΏΠ΅Ρ€ΠΊΠ° ΠΎΡ‚ сСмСйство Mochokidae. РазпространСниС Π’...

Vocab Tokens Count
8k ▁s yn od ont is ▁o u em e ensis ... (+22 more) 32
16k ▁syn odont is ▁o u em e ensis ▁С ▁вид ... (+20 more) 30
32k ▁syn odont is ▁ou em e ensis ▁С ▁вид β–Π»ΡŠΡ‡Π΅ΠΏΠ΅Ρ€ΠΊΠ° ... (+19 more) 29
64k ▁synodontis ▁ou eme ensis ▁С ▁вид β–Π»ΡŠΡ‡Π΅ΠΏΠ΅Ρ€ΠΊΠ° ▁от ▁сСмСйство ▁mochokidae ... (+13 more) 23

Sample 3: Orthotomus derbianus Π΅ Π²ΠΈΠ΄ ΠΏΡ‚ΠΈΡ†Π° ΠΎΡ‚ сСмСйство Cisticolidae. РазпространСниС Π’ΠΈΠ΄ΡŠ...

Vocab Tokens Count
8k ▁or th ot om us ▁der b ian us ▁С ... (+22 more) 32
16k ▁or th ot omus ▁der b ianus ▁С ▁вид ▁птица ... (+17 more) 27
32k ▁orth ot omus ▁der b ianus ▁С ▁вид ▁птица ▁от ... (+14 more) 24
64k ▁orth ot omus ▁der b ianus ▁С ▁вид ▁птица ▁от ... (+13 more) 23

Key Findings

  • Best Compression: 64k achieves 4.373x compression
  • Lowest UNK Rate: 8k with 0.0493% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 246,747 17.91 2,004,902 5.8% 16.2%
2-gram Subword 385 πŸ† 8.59 20,810 61.1% 97.4%
3-gram Word 1,033,483 19.98 4,251,847 2.5% 8.2%
3-gram Subword 3,528 11.78 189,319 23.2% 62.6%
4-gram Word 2,692,464 21.36 7,308,829 1.5% 5.1%
4-gram Subword 21,676 14.40 1,191,303 10.4% 32.6%
5-gram Word 2,278,792 21.12 5,264,454 1.8% 5.4%
5-gram Subword 93,842 16.52 4,256,227 5.4% 19.0%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 ΠΏΡ€Π΅Π· Π³ 371,674
2 да сС 178,835
3 ΠΏΡ€Π΅Π· Π³ΠΎΠ΄ΠΈΠ½Π° 109,499
4 външни ΠΏΡ€Π΅ΠΏΡ€Π°Ρ‚ΠΊΠΈ 108,119
5 Π΅ Π½Π° 90,144

3-grams (Word):

Rank N-gram Count
1 ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅ Π½Π° 72,585
2 ΠΈΠ·Ρ‚ΠΎΡ‡Π½ΠΈΡ†ΠΈ външни ΠΏΡ€Π΅ΠΏΡ€Π°Ρ‚ΠΊΠΈ 52,888
3 ΠΏΡ€ Π½ Π΅ 38,682
4 моТС да сС 32,598
5 ΠΏΡ€Π΅Π· Π³ Π΅ 28,945

4-grams (Word):

Rank N-gram Count
1 разпространСниС Π²ΠΈΠ΄ΡŠΡ‚ Π΅ разпространСн 11,928
2 Π²ΠΈΠ΄ΡŠΡ‚ Π΅ разпространСн Π² 11,811
3 ΠΌΠΎΠΆΠ΅ Π΄Π° сС отнася 9,394
4 външни ΠΏΡ€Π΅ΠΏΡ€Π°Ρ‚ΠΊΠΈ ΠΎΡ„ΠΈΡ†ΠΈΠ°Π»Π΅Π½ сайт 9,248
5 Π·Π°ΡΡ‚Ρ€Π°ΡˆΠ΅Π½ ΠΎΡ‚ ΠΈΠ·Ρ‡Π΅Π·Π²Π°Π½Π΅ разпространСниС 9,061

5-grams (Word):

Rank N-gram Count
1 разпространСниС Π²ΠΈΠ΄ΡŠΡ‚ Π΅ разпространСн Π² 11,030
2 ΠΌΠΎΠΆΠ΅ Π΄Π° сС отнася Π·Π° 8,323
3 Π΅ Π²ΠΈΠ΄ ΠΏΡ‚ΠΈΡ†Π° ΠΎΡ‚ сСмСйство 8,165
4 ΠΈΠ·Ρ‚ΠΎΡ‡Π½ΠΈΡ†ΠΈ външни ΠΏΡ€Π΅ΠΏΡ€Π°Ρ‚ΠΊΠΈ уСбсайт Π½Π° 7,757
5 външни ΠΏΡ€Π΅ΠΏΡ€Π°Ρ‚ΠΊΠΈ уСбсайт Π½Π° ΠΎΠ±Ρ‰ΠΈΠ½Π°Ρ‚Π° 7,230

2-grams (Subword):

Rank N-gram Count
1 Π° _ 22,221,689
2 Π½ Π° 13,044,169
3 ΠΈ _ 12,174,707
4 _ с 10,248,868
5 _ Π½ 9,602,446

3-grams (Subword):

Rank N-gram Count
1 Π½ Π° _ 8,421,175
2 _ Π½ Π° 7,714,836
3 _ ΠΏ Ρ€ 3,824,613
4 Ρ‚ Π° _ 3,691,871
5 Ρ‚ ΠΎ _ 3,556,816

4-grams (Subword):

Rank N-gram Count
1 _ Π½ Π° _ 5,969,377
2 Π° Ρ‚ Π° _ 2,454,178
3 _ ΠΎ Ρ‚ _ 2,129,103
4 Π° _ Π½ Π° 1,914,071
5 _ ΠΏ Ρ€ Π΅ 1,889,917

5-grams (Subword):

Rank N-gram Count
1 Π° _ Π½ Π° _ 1,515,525
2 Π΅ _ Π½ Π° _ 949,109
3 _ ΠΏ Ρ€ Π΅ Π· 882,206
4 ΠΏ Ρ€ Π΅ Π· _ 849,611
5 ΠΎ _ Π½ Π° _ 755,344

Key Findings

  • Best Perplexity: 2-gram (subword) with 385
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~19% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.9743 1.965 12.25 1,896,771 2.6%
1 Subword 1.0920 2.132 7.98 9,126 0.0%
2 Word 0.3814 1.303 2.47 23,216,480 61.9%
2 Subword 0.7778 1.714 5.53 72,830 22.2%
3 Word 0.1657 1.122 1.39 57,272,367 83.4%
3 Subword 0.8207 1.766 4.91 403,072 17.9%
4 Word 0.0723 πŸ† 1.051 1.13 79,394,777 92.8%
4 Subword 0.7498 1.682 3.81 1,979,446 25.0%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. Π½Π° ΠΈΠ·Π»Π΅Π·Π»ΠΈ ΠΏΡ€Π΅Π΄ΠΈ Ρ‚Π°Π·ΠΈ систСма ΠΎΡ‚ общинския Ρ†Π΅Π½Ρ‚ΡŠΡ€ Π΅ Π½Π°ΠΉ Π΄ΠΎΠ±Ρ€ΠΎΡ‚ΠΎ ΠΎΡ‚ контСкстовото Π·Π°ΠΏΠΈΡ‚Π²Π°Π½Π΅ Π·Π° написв...
  2. Π² ΠΌΠΈΠ½Π°Π»ΠΎΡ‚ΠΎ ΠΊΠΎΡ€Π°Π±ΠΈΡ‚Π΅ ΠΎΡ‚ своСто ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈ актриси Π°ΠΊΡ‚ΡŒΠΎΡ€ΠΈ Ρ€ΠΎΠΊ Π³Ρ€ΡƒΠΏΠ° Π² ΠΊΠΎΠ»Π΅ΠΊΡ†ΠΈΠΎΠ½ΠΈΡ€Π°Π½Π΅ Π½Π° воСнноморска...
  3. ΠΈ Π΄Π΅Π½Ρ‡Π΅Π²Ρ†ΠΈ ΠΈ Π΅ посрСщала Π³ΠΎΠ΄Π΅Π½ΠΈΡ†Π°Ρ‚Π° Π½Π° Ρ‡Π΅Ρ€Π½ΠΎΠΌΠΎΡ€Π΅Ρ† бургас ΠΎΠ±Ρ‰ΠΈΠ½Π° ΠΏΠ°Π»Π΅ΠΎΡ€ φούφας антиполохагос Π°Ρ‚ΠΈΠ½Π° Π·Π°...

Context Size 2:

  1. ΠΏΡ€Π΅Π· Π³ Ρ‚ΡŠΠΉ ΠΊΠ°Ρ‚ΠΎ Π³ΠΎΠ΄ΠΈΠ½ΠΈ Π±ΡŠΠ»Π³Π°Ρ€ΠΈΡ ΠΌΠ΅Π΄Π°Π» Π·Π° Π½Π° Π±Π°Ρ€ΠΈΠ»Π° ΠΏΡ€Π΅Π· Π³ Π² Π±ΠΈΡ‚ΠΊΠ°Ρ‚Π° Π΅ част ΠΎΡ‚
  2. Π΄Π° сС ΡˆΡƒΠΌΠΈ ΠΎΠΊΠΎΠ»ΠΎ Π²Ρ€ΡŠΠ·ΠΊΠ°Ρ‚Π° ѝ с Ρ€Π΅ΠΏΡƒΠ±Π»ΠΈΠΊΠ° Π±ΡŠΠ»Π³Π°Ρ€ΠΈΡ собствСността Π½Π° ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½Π° Π½Π°ΡƒΡ‡Π½Π° конфСрСнция Π³Π°...
  3. външни ΠΏΡ€Π΅ΠΏΡ€Π°Ρ‚ΠΊΠΈ ΠΎΡ„ΠΈΡ†ΠΈΠ°Π»Π΅Π½ сайт схСма Π½Π° тСлСскопа Π΅ Π±ΠΈΠ»ΠΎ напълно Π΅Π»ΠΈΠΌΠΈΠ½ΠΈΡ€Π°Π½ΠΎ ΡΡŠΠΌΠ½Π΅Π½ΠΈΠ΅Ρ‚ΠΎ Π½Π° Ρ€ΡŠΠΊΠΎΠ²ΠΎΠ΄Ρ...

Context Size 3:

  1. ΠΏΠΎ Π²Ρ€Π΅ΠΌΠ΅ Π½Π° празничния сСзон ΠΈ стачката Π² ΠΌΠ΅Ρ‚Ρ€ΠΎΡ‚ΠΎ Π² Ρ‚ΠΎΠΊΠΈΠΎ vx Π½Π΅ сС ΠΈΠ·ΠΏΠΎΠ»Π·Π²Π° ΠΎΡ‚ Π½Π°Ρ†ΠΈΠΎΠ½Π°Π»Π½ΠΎ ΠΌΡƒΠ·ΠΈΠΊΠ°Π»Π½ΠΎ
  2. ΠΈΠ·Ρ‚ΠΎΡ‡Π½ΠΈΡ†ΠΈ външни ΠΏΡ€Π΅ΠΏΡ€Π°Ρ‚ΠΊΠΈ ΠΎΡ„ΠΈΡ†ΠΈΠ°Π»Π΅Π½ сайт Π½Π° ΠΌΠ΅Ρ‚Π΅ΠΎΡ€ ΠΏΡŠΡ€Π²ΠΈΡ‚Π΅ ѝ постановки са дипломният ѝ ΡΠΏΠ΅ΠΊΡ‚Π°ΠΊΡŠΠ» с...
  3. ΠΏΡ€ Π½ Π΅ ΠΈ са ΠΈΠ·ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»Π½ΠΎ популярни Π½Π° Π±Π°Π»ΠΊΠ°Π½ΠΈΡ‚Π΅ ΠΈ Π²Ρ‚ΠΎΡ€Π°Ρ‚Π° Π½Π°ΠΉ ΠΎΠ±Ρ‰Π° срСд ΠΌΡŠΠΆΠ΅Ρ‚Π΅ ΠΏΠΎ ΠΎΠ½ΠΎΠ²Π° Π²Ρ€Π΅ΠΌΠ΅

Context Size 4:

  1. разпространСниС Π²ΠΈΠ΄ΡŠΡ‚ Π΅ разпространСн Π² ΠΌΠ°Π»Π°Π²ΠΈ ΠΌΠΎΠ·Π°ΠΌΠ±ΠΈΠΊ ΠΈ j placidochromis johnstoni in iucn iucn re...
  2. Π²ΠΈΠ΄ΡŠΡ‚ Π΅ разпространСн Π² Π΄Π΅ΠΌΠΎΠΊΡ€Π°Ρ‚ΠΈΡ‡Π½Π° Ρ€Π΅ΠΏΡƒΠ±Π»ΠΈΠΊΠ° t lamprologus lethops in iucn iucn red list of threat...
  3. ΠΌΠΎΠΆΠ΅ Π΄Π° сС отнася Π΄ΠΎ Ρ„Π΅Ρ€Π΄ΠΈΠ½Π°Π½Π΄ΠΎ i Π΄Π΅ ΠΌΠ΅Π΄ΠΈΡ‡ΠΈ Π·Π° Π΄Π° ΠΏΡ€ΠΈΡŽΡ‚ΠΈ ΠΈΠ·Π²ΡŠΠ½Π±Ρ€Π°Ρ‡Π½ΠΈΡ‚Π΅ Π΄ΡŠΡ‰Π΅Ρ€ΠΈ Π½Π° алСсандро Π·Π° Ρ€Π°Π·Π»ΠΈΠΊ...

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _Ρ‚Ρ€Ρ…Ρ‚Π²ΡŠΡ‚Π²Π°_бъно_
  2. Π°_ma_Π²Π΅Ρ€Π³._ΠΏ_Ρ†_ΠΌ
  3. ΠΈΡ‚Π°_мСнизандиясн

Context Size 2:

  1. Π°_ΠΏΡ€Π΅Π²Π°Ρ‚_ΠΈ_с_ΠΊΠΎ_ΠΊ
  2. Π½Π°_сСд_Ρ…Π΅ΡŠΡ€ΡˆΠΈ_Π°ΠΊ:
  3. ΠΈ_ΠΎΡ‚_стори_Ρ‚Π΅_съС

Context Size 3:

  1. Π½Π°_кампийский_став
  2. _Π½Π°_ΠΎΡ‚_Π²ΠΈΡ‚Π΅_Ρ€ΡŠΡ‡Π΅ΠΏΠ΅
  3. _причСски_Π±Π°Π²Π°Ρ‰Π°_с

Context Size 4:

  1. _Π½Π°_ΡˆΠ°Π»Π°ΠΌΠ±Ρ€ΠΎΠ·ΠΈΠ΅ΠΎΠ»ΠΎΠ³
  2. Π°Ρ‚Π°_Π΅_Π²Π°ΠΆΠ½Π°_космичС
  3. _ΠΎΡ‚_ΠΏΠΎΠΏΠΎΠ²_ΠΊΠΎΠ½Π²ΠΎΠΉΠ½Π°_

Key Findings

  • Best Predictability: Context-4 (word) with 92.8% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (1,979,446 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 888,624
Total Tokens 105,654,230
Mean Frequency 118.90
Median Frequency 4
Frequency Std Dev 9303.24

Most Common Words

Rank Word Frequency
1 Π½Π° 5,995,585
2 Π² 3,186,690
3 ΠΈ 3,167,004
4 Π΅ 2,175,525
5 ΠΎΡ‚ 2,154,986
6 Π·Π° 1,348,073
7 сС 1,261,391
8 Π³ 1,205,312
9 с 1,088,412
10 ΠΏΡ€Π΅Π· 849,597

Least Common Words (from vocabulary)

Rank Word Frequency
1 ΠΊΠ΅ΠΏΠ΅Π²Ρ†ΠΈ 2
2 сардТовци 2
3 мъндън 2
4 талиСвия 2
5 carbonato 2
6 tallio 2
7 Ρ€Π°Π·Ρ€ 2
8 Π±Π°Ρ€ΡƒΡ‚Ρ…Π°Π½Π° 2
9 Π°Π·Π°Π΄Π»Ρƒ 2
10 ΡˆΡ‚Π°Π»Π°Π³ 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 0.9425
RΒ² (Goodness of Fit) 0.997405
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 35.2%
Top 1,000 53.9%
Top 5,000 70.2%
Top 10,000 77.2%

Key Findings

  • Zipf Compliance: RΒ²=0.9974 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 35.2% of corpus
  • Long Tail: 878,624 words needed for remaining 22.8% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Alignment Quality

Multilingual t-SNE

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.7975 πŸ† 0.3595 N/A N/A
mono_64d 64 0.7851 0.2896 N/A N/A
mono_128d 128 0.7344 0.2334 N/A N/A
aligned_32d 32 0.7975 0.3609 0.1560 0.5140
aligned_64d 64 0.7851 0.2794 0.3420 0.7340
aligned_128d 128 0.7344 0.2326 0.4740 0.8180

Key Findings

  • Best Isotropy: mono_32d with 0.7975 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.2926. Lower values indicate better semantic separation.
  • Alignment Quality: Aligned models achieve up to 47.4% R@1 in cross-lingual retrieval.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 5.000 High morphological productivity Reliable analysis
Idiomaticity Gap -0.715 Low formulaic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples
-ΠΏΡ€ ΠΏΡ€Π΅Π΄Ρ…ΠΎΠΆΠ΄Π°Ρ‰, ΠΏΡ€ΠΈΡ…Π»ΡƒΠΏΠ΅Π½Π°, ΠΏΡ€Π°Π²Π½ΠΎΠΎΠ±Π²ΡŠΡ€Π·Π²Π°Ρ‰ΠΈ

Productive Suffixes

Suffix Examples
-Π° исаака, ΠΆΠΈΠΆΠ°Π²ΠΈΡ†Π°, Π³Π°ΠΌΠ΅Ρ‚Π°
-Ρ‚Π° Π³Π°ΠΌΠ΅Ρ‚Π°, Π»ΠΎΠΏΠ°Ρ‚ΠΎΠ²ΠΈΠ΄Π½Π°Ρ‚Π°, ΠΌΠ°Π»ΠΈΠ½ΠΊΠ°Ρ‚Π°
-Ρ‚Π΅ Π²Ρ€Π°ΠΏΡ‡ΠΈΡˆΡ‚Π΅, дрСвноиндийскитС, рСгрСсионнитС
-ΠΈΡ‚Π΅ дрСвноиндийскитС, рСгрСсионнитС, Ρ†ΠΈΠΌΠ΅Π½Ρ‚ΠΎΠ²ΠΈΡ‚Π΅
-Π°Ρ‚Π° Π»ΠΎΠΏΠ°Ρ‚ΠΎΠ²ΠΈΠ΄Π½Π°Ρ‚Π°, ΠΌΠ°Π»ΠΈΠ½ΠΊΠ°Ρ‚Π°, ΠΏΠΎΠΊΠΎΠΉΠ½ΠΈΡ†Π°Ρ‚Π°
-Π½ΠΈ ΠΏΡŠΠ»Π½ΠΎΠ·Π½Π°Ρ‡Π½ΠΈ, шСкони, капсулни
-ΠΊΠΈ вСсСгонски, гаговски, бачовски
-ия ΡˆΡƒΠΌΠ½ΠΈΡ, напрСТСния, валутния

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
Π»Π³Π°Ρ€ 2.07x 163 contexts Π΅Π»Π³Π°Ρ€, ΠΈΠ»Π³Π°Ρ€, ΡŽΠ»Π³Π°Ρ€
нска 1.82x 254 contexts анска, энска, юнска
анск 1.39x 921 contexts данск, анска, банск
ийск 1.57x 389 contexts бийск, ийски, лийски
нски 1.49x 508 contexts янски, ански, онски
ълга 2.34x 39 contexts дълга, бълга, ългаз
Π΅ΠΌΠ²Ρ€ 2.64x 21 contexts Π½ΠΎΠ΅ΠΌΠ²Ρ€, Π΄Π΅ΠΊΠ΅ΠΌΠ²Ρ€, Π½ΠΏΠ΅ΠΌΠ²Ρ€ΠΈ
рски 1.42x 269 contexts ΡŽΡ€ΡΠΊΠΈ, врски, Срски
Ρ‚ΠΎΡ‡Π½ 1.58x 134 contexts Ρ‚ΠΎΡ‡Π½ΠΈ, Ρ‚ΠΎΡ‡Π½ΠΎ, Ρ‚ΠΎΡ‡Π½Π°
ичСс 1.43x 204 contexts бичСс, уичСс, ичСск
остр 1.37x 215 contexts остри, остро, остра
СниС 1.49x 123 contexts пСниС, шСниС, мСниС

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

Prefix Suffix Frequency Examples
-ΠΏΡ€ -Π° 59 words ΠΏΡ€Ρ–Π»ΠΎΠΆΡ–Ρ…Π°, ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ½Π°Ρ‚Π°
-ΠΏΡ€ -Ρ‚Π΅ 21 words притСснявайтС, ΠΏΡ€ΠΎΡ„ΠΈΠ»ΠΈΡ€Π°Ρ‰ΠΈΡ‚Π΅
-ΠΏΡ€ -Ρ‚Π° 20 words ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ½Π°Ρ‚Π°, ΠΏΡ€ΠΈΡ‚Π΅ΠΆΠ°Π²Π°Ρ‰Π°Ρ‚Π°
-ΠΏΡ€ -ΠΈΡ‚Π΅ 18 words ΠΏΡ€ΠΎΡ„ΠΈΠ»ΠΈΡ€Π°Ρ‰ΠΈΡ‚Π΅, ΠΏΡ€Π΅Π±ΠΎΠ³Π°Ρ‚ΠΈΡ‚Π΅
-ΠΏΡ€ -Π°Ρ‚Π° 16 words ΠΏΡ€ΠΈΠ»ΠΎΠΆΠ½Π°Ρ‚Π°, ΠΏΡ€ΠΈΡ‚Π΅ΠΆΠ°Π²Π°Ρ‰Π°Ρ‚Π°
-ΠΏΡ€ -ия 15 words противоракСтния, притСТания
-ΠΏΡ€ -Ρ‚ΠΎ 13 words прозводството, прСпострояванСто
-ΠΏΡ€ -Π½ΠΈ 9 words ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΈ, ΠΏΡ€Π΅Π΄Ρ…ΠΎΠΆΠ΄Π°Π½ΠΈ
-ΠΏΡ€ -ΠΊΠΈ 7 words ΠΏΡ€ΠΎΠΊΠ°Ρ€Π²Π°ΠΉΠΊΠΈ, ΠΏΡ€Π°Π²Π΅ΠΉΠΊΠΈ
-ΠΏΡ€ -Π½Π° 6 words ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»Π½Π°, ΠΏΡ€Π΅ΡΡ‚ΡŠΠΏΠ½Π°

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
ΠΏΡ€ΠΎΠ±ΠΈΡ‚ΠΈΡ‚Π΅ ΠΏΡ€-ΠΎΠ±ΠΈΡ‚-ΠΈΡ‚Π΅ 6.0 ΠΎΠ±ΠΈΡ‚
натрупванията Π½Π°Ρ‚Ρ€ΡƒΠΏΠ²Π°Π½-ия-Ρ‚Π° 6.0 Π½Π°Ρ‚Ρ€ΡƒΠΏΠ²Π°Π½
смразяващата смразяващ-Π°Ρ‚Π° 4.5 смразяващ
Π»ΠΈΡˆΠ°Π²Π°Π½Π΅Ρ‚ΠΎ лишаванС-Ρ‚ΠΎ 4.5 лишаванС
тСлСпатия Ρ‚Π΅Π»Π΅ΠΏΠ°Ρ‚-ия 4.5 Ρ‚Π΅Π»Π΅ΠΏΠ°Ρ‚
ΠΏΠ»ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΡ‚ΠΎ ΠΏΠ»ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎ-Ρ‚ΠΎ 4.5 ΠΏΠ»ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎ
ΠΌΠ°Π»ΠΎΠ²Π°ΠΆΠ½ΠΎΡ‚ΠΎ ΠΌΠ°Π»ΠΎΠ²Π°ΠΆΠ½ΠΎ-Ρ‚ΠΎ 4.5 ΠΌΠ°Π»ΠΎΠ²Π°ΠΆΠ½ΠΎ
стигналитС стигнал-ΠΈΡ‚Π΅ 4.5 стигнал
Π»Π°Ρ‚ΠΈΠ½ΠΈΠ·ΠΈΡ€Π°Π½ΠΈ Π»Π°Ρ‚ΠΈΠ½ΠΈΠ·ΠΈΡ€Π°-Π½ΠΈ 4.5 Π»Π°Ρ‚ΠΈΠ½ΠΈΠ·ΠΈΡ€Π°
уругвайското уругвайско-Ρ‚ΠΎ 4.5 уругвайско
паразитология ΠΏΠ°Ρ€Π°Π·ΠΈΡ‚ΠΎΠ»ΠΎΠ³-ия 4.5 ΠΏΠ°Ρ€Π°Π·ΠΈΡ‚ΠΎΠ»ΠΎΠ³
Ρ€Π΅Π°Π»ΠΈΠ·ΠΈΡ€Π°Π½Π°Ρ‚Π° Ρ€Π΅Π°Π»ΠΈΠ·ΠΈΡ€Π°Π½-Π°Ρ‚Π° 4.5 Ρ€Π΅Π°Π»ΠΈΠ·ΠΈΡ€Π°Π½
изчислимостта изчислимост-Ρ‚Π° 4.5 изчислимост
истинностни истинност-Π½ΠΈ 4.5 истинност
паратаксалното паратаксално-Ρ‚ΠΎ 4.5 паратаксално

6.6 Linguistic Interpretation

Automated Insight: The language Bulgarian shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 64k BPE Best compression (4.37x)
N-gram 2-gram Lowest perplexity (385)
Markov Context-4 Highest predictability (92.8%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) Γ— 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

RΒ² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-07 00:49:27

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train wikilangs/bg