Czech - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on Czech Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
π Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Morphological Analysis (Experimental)
- 7. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.417x | 3.42 | 0.0769% | 2,893,388 |
| 16k | 3.845x | 3.85 | 0.0865% | 2,570,989 |
| 32k | 4.245x | 4.25 | 0.0955% | 2,328,840 |
| 64k | 4.591x π | 4.59 | 0.1033% | 2,153,192 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: <tr> SouvisejΓcΓ ΔlΓ‘nky Seznam kulturnΓch pamΓ‘tek v okrese Znojmo ExternΓ odkazy...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | β< tr > βsouvisejΓcΓ βΔlΓ‘nky βseznam βkultur nΓch βpam Γ‘tek ... (+17 more) |
27 |
| 16k | β< tr > βsouvisejΓcΓ βΔlΓ‘nky βseznam βkulturnΓch βpamΓ‘tek βv βokrese ... (+13 more) |
23 |
| 32k | β< tr > βsouvisejΓcΓ βΔlΓ‘nky βseznam βkulturnΓch βpamΓ‘tek βv βokrese ... (+11 more) |
21 |
| 64k | β< tr > βsouvisejΓcΓ βΔlΓ‘nky βseznam βkulturnΓch βpamΓ‘tek βv βokrese ... (+11 more) |
21 |
Sample 2: Mirovice <tr> Sochovice <tr> SouvisejΓcΓ ΔlΓ‘nky Seznam kulturnΓch pamΓ‘tek v okre...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βmi rovice β< tr > βso ch ovice β< tr ... (+17 more) |
27 |
| 16k | βmi rovice β< tr > βso chovice β< tr > ... (+14 more) |
24 |
| 32k | βmi rovice β< tr > βso chovice β< tr > ... (+14 more) |
24 |
| 64k | βmi rovice β< tr > βso chovice β< tr > ... (+14 more) |
24 |
Sample 3: Sabra mΕ―ΕΎe bΓ½t: sabra β hebrejskΓ© slovo Sabra (tank) Sabra β sΓdlo v Libanonu, d...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βsa bra βmΕ―ΕΎe βbΓ½t : βsa bra ββ βhebrej skΓ© ... (+22 more) |
32 |
| 16k | βsa bra βmΕ―ΕΎe βbΓ½t : βsa bra ββ βhebrej skΓ© ... (+21 more) |
31 |
| 32k | βsa bra βmΕ―ΕΎe βbΓ½t : βsa bra ββ βhebrejskΓ© βslovo ... (+17 more) |
27 |
| 64k | βsa bra βmΕ―ΕΎe βbΓ½t : βsa bra ββ βhebrejskΓ© βslovo ... (+15 more) |
25 |
Key Findings
- Best Compression: 64k achieves 4.591x compression
- Lowest UNK Rate: 8k with 0.0769% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|---|
| 2-gram | Word | 644,039 | 19.30 | 4,952,358 | 4.8% | 11.9% |
| 2-gram | Subword | 449 π | 8.81 | 30,223 | 53.9% | 98.0% |
| 3-gram | Word | 2,339,059 | 21.16 | 8,925,525 | 2.6% | 6.4% |
| 3-gram | Subword | 4,755 | 12.22 | 255,109 | 16.7% | 54.3% |
| 4-gram | Word | 5,475,376 | 22.38 | 14,408,434 | 1.3% | 3.9% |
| 4-gram | Subword | 32,796 | 15.00 | 1,646,964 | 6.8% | 24.8% |
| 5-gram | Word | 4,645,198 | 22.15 | 10,221,820 | 1.0% | 3.6% |
| 5-gram | Subword | 160,592 | 17.29 | 6,437,902 | 3.7% | 13.8% |
Top 5 N-grams by Size
2-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | v roce |
1,319,715 |
| 2 | externΓ odkazy |
445,741 |
| 3 | odkazy reference |
238,320 |
| 4 | reference externΓ |
226,335 |
| 5 | v letech |
212,278 |
3-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | reference externΓ odkazy |
226,294 |
| 2 | odkazy reference externΓ |
124,877 |
| 3 | v roce v |
123,855 |
| 4 | v roce se |
91,582 |
| 5 | v roce byl |
64,824 |
4-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | odkazy reference externΓ odkazy |
124,850 |
| 2 | odkazy reference souvisejΓcΓ ΔlΓ‘nky |
42,127 |
| 3 | v roce v roce |
34,075 |
| 4 | reference externΓ odkazy v |
29,798 |
| 5 | externΓ odkazy oficiΓ‘lnΓ strΓ‘nky |
20,103 |
5-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | odkazy reference externΓ odkazy v |
16,236 |
| 2 | odkazy reference literatura externΓ odkazy |
12,685 |
| 3 | reference externΓ odkazy oficiΓ‘lnΓ strΓ‘nky |
11,834 |
| 4 | historie prvnΓ pΓsemnΓ‘ zmΓnka o |
11,754 |
| 5 | reference externΓ odkazy v okrese |
11,425 |
2-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | a _ |
24,781,439 |
| 2 | _ p |
22,589,509 |
| 3 | e _ |
22,268,109 |
| 4 | _ s |
22,095,879 |
| 5 | _ v |
19,926,387 |
3-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | n Γ _ |
7,673,842 |
| 2 | _ p o |
7,582,650 |
| 3 | _ v _ |
7,272,309 |
| 4 | n a _ |
6,690,107 |
| 5 | _ a _ |
6,501,417 |
4-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ n a _ |
3,511,209 |
| 2 | _ s e _ |
3,364,693 |
| 3 | _ p r o |
3,186,267 |
| 4 | _ b y l |
2,542,448 |
| 5 | Γ½ c h _ |
2,252,305 |
5-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ k t e r |
1,412,346 |
| 2 | _ r o c e |
1,383,042 |
| 3 | _ v _ r o |
1,382,611 |
| 4 | r o c e _ |
1,354,432 |
| 5 | v _ r o c |
1,321,210 |
Key Findings
- Best Perplexity: 2-gram (subword) with 449
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~14% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|---|
| 1 | Word | 1.0698 | 2.099 | 16.20 | 3,817,910 | 0.0% |
| 1 | Subword | 1.2123 | 2.317 | 8.62 | 14,369 | 0.0% |
| 2 | Word | 0.3832 | 1.304 | 2.35 | 61,779,051 | 61.7% |
| 2 | Subword | 0.6716 | 1.593 | 4.71 | 123,767 | 32.8% |
| 3 | Word | 0.1433 | 1.104 | 1.31 | 144,949,424 | 85.7% |
| 3 | Subword | 0.7660 | 1.701 | 4.77 | 583,275 | 23.4% |
| 4 | Word | 0.0564 π | 1.040 | 1.10 | 189,649,924 | 94.4% |
| 4 | Subword | 0.7409 | 1.671 | 4.00 | 2,782,368 | 25.9% |
Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
Context Size 1:
v podobΔ vystavΔn byl opΔtovnΔ pohΕbena ve dveΕΓch nΔkterΓ½ch pΕΓpadech mΕ―ΕΎe vytvoΕit jedinΓ© dopravnΓ...a pΕΓsluΕ‘nΓk starΓ© mΔsto zbiroh ΕΎiva je americkΓ½ teoretickΓ½ kvantovΓ½ stav potrvΓ‘ v lΓ©tΔ odeΕ‘el nana fakt ΕΎe nemΔl v Δervenci i z pΕ―vodnΓch 113 120 metrΕ― vysokΓ©m tlaku na vΓ½chodΔ
Context Size 2:
v roce lidΓ© 6 prosince praha byl michal kraus Δssd Δssd 48 rychnov nad knΔΕΎnou kaple stojΓexternΓ odkazy jihovΓ½chodnΓ evropy jihozΓ‘padnΓ asie kavkazu ΔΓny sibiΕe vΓ½chodnΓ asie hustΔ chlupatΓ‘...odkazy reference externΓ odkazy sdruΕΎenΓ na praze 4 rozhovor vznikl v roce kde bojoval proti ostrogΓ³...
Context Size 3:
reference externΓ odkazy v ternopilskΓ© oblasti na Εece strypa v historickΓ©m regionu hornΓ luΕΎice mim...odkazy reference externΓ odkazy speleologickΓ‘ spoleΔnost vΕ‘evΔd romantismu hudebnΓ skladatelΓ© klavΓr...v roce v angliΔtinΔ se pro celou skupinu alfred crompton catherine musinsky jose bonaparte bhart anj...
Context Size 4:
odkazy reference externΓ odkazy strategie sΓ©rieodkazy reference souvisejΓcΓ ΔlΓ‘nky fotografie v norsku externΓ odkazy na seznamu svΔtovΓ©ho dΔdictvΓ...v roce v roce v praze pilotnΓ Ε‘kolu druhΓ‘ svΔtovΓ‘ vΓ‘lka po roce vojenskΓ© sluΕΎby v polskΓ© armΓ‘dΔ prot...
Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
Context Size 1:
_hraloponodovo._os_zu_va_vu_duloekodici_micl_v_s
Context Size 2:
a_stΕΓjna_se_rozh_pΕΓΔku_uraven_pee_na_vΓtlickΓ‘_hov
Context Size 3:
nΓ_nejΔastoru_o_sp_polik_v_com_trans_v_195_zΓΊΔasnΓ‘_nΓ‘z
Context Size 4:
_na_v_nicmΓ©nΔ_chlaz_se_proje_asistenci_pro_pozdnΔ,_lze_sa
Key Findings
- Best Predictability: Context-4 (word) with 94.4% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (2,782,368 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 1,830,714 |
| Total Tokens | 237,612,209 |
| Mean Frequency | 129.79 |
| Median Frequency | 5 |
| Frequency Std Dev | 9362.17 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | v | 7,396,110 |
| 2 | a | 6,633,731 |
| 3 | na | 3,536,561 |
| 4 | se | 3,396,490 |
| 5 | je | 2,110,163 |
| 6 | s | 1,781,636 |
| 7 | z | 1,747,028 |
| 8 | do | 1,440,810 |
| 9 | roce | 1,383,007 |
| 10 | ve | 1,284,897 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | mihty | 2 |
| 2 | socionaut | 2 |
| 3 | mafjar | 2 |
| 4 | vlta | 2 |
| 5 | havlΓ‘tkovΓ‘ | 2 |
| 6 | makbΓΊsu | 2 |
| 7 | propfanΕ― | 2 |
| 8 | propfanu | 2 |
| 9 | ochmeloff | 2 |
| 10 | luncaΘi | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 0.9138 |
| RΒ² (Goodness of Fit) | 0.997539 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 27.1% |
| Top 1,000 | 45.7% |
| Top 5,000 | 63.0% |
| Top 10,000 | 70.6% |
Key Findings
- Zipf Compliance: RΒ²=0.9975 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 27.1% of corpus
- Long Tail: 1,820,714 words needed for remaining 29.4% coverage
5. Word Embeddings Evaluation
5.1 Cross-Lingual Alignment
5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|---|---|---|---|---|---|
| mono_32d | 32 | 0.7988 | 0.3622 | N/A | N/A |
| mono_64d | 64 | 0.7835 | 0.2893 | N/A | N/A |
| mono_128d | 128 | 0.7363 | 0.2299 | N/A | N/A |
| aligned_32d | 32 | 0.7988 π | 0.3646 | 0.3500 | 0.7360 |
| aligned_64d | 64 | 0.7835 | 0.2898 | 0.5900 | 0.8980 |
| aligned_128d | 128 | 0.7363 | 0.2271 | 0.7320 | 0.9520 |
Key Findings
- Best Isotropy: aligned_32d with 0.7988 (more uniform distribution)
- Semantic Density: Average pairwise similarity of 0.2938. Lower values indicate better semantic separation.
- Alignment Quality: Aligned models achieve up to 73.2% R@1 in cross-lingual retrieval.
- Recommendation: 128d aligned for best cross-lingual performance
6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|---|---|---|---|
| Productivity Index | 5.000 | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | -0.741 | Low formulaic content | - |
6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
Productive Prefixes
| Prefix | Examples |
|---|---|
-ne |
nezamΓtl, neomorf, nenapΓ‘jenΓ½m |
-po |
poΕ‘tulky, ponorΕ‘Ε₯ovΓ‘nΓ, powerkiting |
Productive Suffixes
| Suffix | Examples |
|---|---|
-em |
charmsem, treitschkem, holtem |
-ch |
orbitalech, lekebusch, sklΓzenΓ½ch |
-ho |
vladivostockΓ©ho, sertoliho, cenokarpnΓho |
-ou |
hobgarskou, vΓ½fukovou, robotou |
6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|---|---|---|---|
ovΓ½c |
2.16x | 487 contexts | ovΓ½ch, xovΓ½ch, novΓ½ch |
skΓ©h |
2.15x | 392 contexts | skΓ©ho, lskΓ©ho, urskΓ©ho |
skΓ½c |
1.97x | 237 contexts | skΓ½ch, skΓ½cov, tskΓ½ch |
ickΓ½ |
1.57x | 496 contexts | tickΓ½, bickΓ½, ΓΊpickΓ½ |
nskΓ© |
1.53x | 491 contexts | anskΓ©, inskΓ©, ΓnskΓ© |
ovΓ‘n |
1.44x | 594 contexts | ovΓ‘nΓ, kovΓ‘n, zovΓ‘nΓ |
ickΓ© |
1.46x | 499 contexts | tickΓ©, lickΓ©, mickΓ© |
ledn |
1.59x | 250 contexts | lednu, ledna, lednΓ½ |
itel |
1.36x | 634 contexts | nitel, litel, pitel |
chΓ‘z |
1.52x | 287 contexts | chΓ‘zΓ, schΓ‘zΓ, ochΓ‘zΓ |
dkaz |
2.66x | 23 contexts | odkaz, odkaze, odkazy |
xter |
1.81x | 76 contexts | exter, xterm, extern |
6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
| Prefix | Suffix | Frequency | Examples |
|---|---|---|---|
-ne |
-ch |
14 words | nepropouΕ‘tΔjΓcΓch, netermΓnovanΓ½ch |
-ne |
-ho |
10 words | nejpokroΔilejΕ‘Γho, nezpochybnitelnΓ©ho |
-ne |
-ou |
9 words | nestejnou, nerozΕ‘iΕitelnou |
-po |
-ho |
9 words | podmΓnkovΓ©ho, polΕ‘tΓ‘ΕovitΓ©ho |
-po |
-ch |
7 words | pohodlnΔjΕ‘Γch, polohovkΓ‘ch |
-po |
-ou |
6 words | ponitranskou, pomΓ‘tnou |
-po |
-em |
3 words | pollackem, povΕΓslem |
6.5 Recursive Morpheme Segmentation
Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).
| Word | Suggested Split | Confidence | Stem |
|---|---|---|---|
| nedoloΕΎenou | ne-doloΕΎen-ou |
6.0 | doloΕΎen |
| nepochybovala | ne-po-chybovala |
6.0 | chybovala |
| nepostaral | ne-po-staral |
6.0 | staral |
| nacionΓ‘lem | nacionΓ‘l-em |
4.5 | nacionΓ‘l |
| chimentiho | chimenti-ho |
4.5 | chimenti |
| prostonΓ‘rodnΓho | prostonΓ‘rodnΓ-ho |
4.5 | prostonΓ‘rodnΓ |
| klokotskΓ½ch | klokotskΓ½-ch |
4.5 | klokotskΓ½ |
| bibliografickΓ©ho | bibliografickΓ©-ho |
4.5 | bibliografickΓ© |
| nesvΔdΔily | ne-svΔdΔily |
4.5 | svΔdΔily |
| nenavΓ‘zali | ne-navΓ‘zali |
4.5 | navΓ‘zali |
| ibragimovem | ibragimov-em |
4.5 | ibragimov |
| zemΔploΕ‘skΓ½ch | zemΔploΕ‘skΓ½-ch |
4.5 | zemΔploΕ‘skΓ½ |
| hlinΓkovΓ½ch | hlinΓkovΓ½-ch |
4.5 | hlinΓkovΓ½ |
| etylenglykolem | etylenglykol-em |
4.5 | etylenglykol |
| mnohosamicovΓ©ho | mnohosamicovΓ©-ho |
4.5 | mnohosamicovΓ© |
6.6 Linguistic Interpretation
Automated Insight: The language Czech shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
7. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 64k BPE | Best compression (4.59x) |
| N-gram | 2-gram | Lowest perplexity (449) |
| Markov | Context-4 | Highest predictability (94.4%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) Γ 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
RΒ² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- π Website: wikilangs.org
- π€ Models: huggingface.co/wikilangs
- π Data: wikipedia-monthly
- π€ Author: Omar Kamali
- π€ Sponsor: Featherless AI
Generated by Wikilangs Models Pipeline
Report Date: 2026-01-08 17:02:58



















