Danish - Wikilangs Models
Comprehensive Research Report & Full Ablation Study
This repository contains NLP models trained and evaluated by Wikilangs, specifically on Danish Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
π Repository Contents
Models & Assets
- Tokenizers (8k, 16k, 32k, 64k)
- N-gram models (2, 3, 4, 5-gram)
- Markov chains (context of 1, 2, 3, 4 and 5)
- Subword N-gram and Markov chains
- Embeddings in various sizes and dimensions (aligned and unaligned)
- Language Vocabulary
- Language Statistics
Analysis and Evaluation
- 1. Tokenizer Evaluation
- 2. N-gram Model Evaluation
- 3. Markov Chain Evaluation
- 4. Vocabulary Analysis
- 5. Word Embeddings Evaluation
- 6. Morphological Analysis (Experimental)
- 7. Summary & Recommendations
- Metrics Glossary
- Visualizations Index
1. Tokenizer Evaluation
Results
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|---|---|---|---|---|
| 8k | 3.590x | 3.59 | 0.1227% | 1,644,330 |
| 16k | 3.953x | 3.95 | 0.1351% | 1,493,346 |
| 32k | 4.286x | 4.29 | 0.1465% | 1,377,449 |
| 64k | 4.557x π | 4.56 | 0.1558% | 1,295,305 |
Tokenization Examples
Below are sample sentences tokenized with each vocabulary size:
Sample 1: Ole Bornemann henviser til: Oluf Bornemann β dansk-norsk biskop Ole Bornemann (r...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βole βbor nem ann βhenviser βtil : βoluf βbor nem ... (+27 more) |
37 |
| 16k | βole βbor nemann βhenviser βtil : βoluf βbor nemann ββ ... (+21 more) |
31 |
| 32k | βole βbor nemann βhenviser βtil : βoluf βbor nemann ββ ... (+20 more) |
30 |
| 64k | βole βbornemann βhenviser βtil : βoluf βbornemann ββ βdansk - ... (+16 more) |
26 |
Sample 2: 18. April er en dansk dokumentarfilm fra instrueret af Poul Meyer. Eksterne henv...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | β 1 8 . βapril βer βen βdansk βdokumentarfilm βfra ... (+11 more) |
21 |
| 16k | β 1 8 . βapril βer βen βdansk βdokumentarfilm βfra ... (+11 more) |
21 |
| 32k | β 1 8 . βapril βer βen βdansk βdokumentarfilm βfra ... (+11 more) |
21 |
| 64k | β 1 8 . βapril βer βen βdansk βdokumentarfilm βfra ... (+11 more) |
21 |
Sample 3: Takeshi Watanabe (fΓΈdt 10. september er en japansk fodboldspiller. Japans fodbol...
| Vocab | Tokens | Count |
|---|---|---|
| 8k | βtak es hi βwat an ab e β( fΓΈdt β ... (+12 more) |
22 |
| 16k | βtak es hi βwat an abe β( fΓΈdt β 1 ... (+11 more) |
21 |
| 32k | βtakes hi βwat an abe β( fΓΈdt β 1 0 ... (+10 more) |
20 |
| 64k | βtakes hi βwatanabe β( fΓΈdt β 1 0 . βseptember ... (+8 more) |
18 |
Key Findings
- Best Compression: 64k achieves 4.557x compression
- Lowest UNK Rate: 8k with 0.1227% unknown tokens
- Trade-off: Larger vocabularies improve compression but increase model size
- Recommendation: 32k vocabulary provides optimal balance for production use
2. N-gram Model Evaluation
Results
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|---|---|---|---|---|---|---|
| 2-gram | Word | 205,179 | 17.65 | 1,697,331 | 7.2% | 18.6% |
| 2-gram | Subword | 291 π | 8.19 | 16,676 | 66.5% | 99.0% |
| 3-gram | Word | 930,238 | 19.83 | 3,294,874 | 2.7% | 7.8% |
| 3-gram | Subword | 2,629 | 11.36 | 143,880 | 25.6% | 68.8% |
| 4-gram | Word | 2,232,256 | 21.09 | 5,289,799 | 1.9% | 5.1% |
| 4-gram | Subword | 16,827 | 14.04 | 898,389 | 12.2% | 36.9% |
| 5-gram | Word | 1,710,284 | 20.71 | 3,467,271 | 1.9% | 5.4% |
| 5-gram | Subword | 78,315 | 16.26 | 3,371,746 | 6.1% | 20.8% |
Top 5 N-grams by Size
2-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | er en |
214,430 |
| 2 | eksterne henvisninger |
158,401 |
| 3 | til at |
148,332 |
| 4 | for at |
127,680 |
| 5 | i den |
98,315 |
3-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | referencer eksterne henvisninger |
69,492 |
| 2 | eksterne henvisninger fra |
52,148 |
| 3 | en del af |
36,449 |
| 4 | fra danmark fra |
31,038 |
| 5 | pΓ₯ grund af |
24,747 |
4-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | referencer eksterne henvisninger fra |
31,041 |
| 2 | fra danmark fra danmark |
18,040 |
| 3 | eksterne henvisninger fra danmark |
13,653 |
| 4 | eksterne henvisninger fra usa |
10,607 |
| 5 | eksterne henvisninger film fra |
8,857 |
5-grams (Word):
| Rank | N-gram | Count |
|---|---|---|
| 1 | referencer eksterne henvisninger fra danmark |
8,198 |
| 2 | referencer eksterne henvisninger fra usa |
7,710 |
| 3 | referencer eksterne henvisninger film fra |
6,839 |
| 4 | fra danmark fra danmark fra |
6,792 |
| 5 | eksterne henvisninger film fra fra |
6,671 |
2-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | e r |
14,686,017 |
| 2 | e _ |
12,413,595 |
| 3 | e n |
11,692,715 |
| 4 | d e |
11,106,628 |
| 5 | r _ |
9,958,657 |
3-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | e r _ |
6,591,787 |
| 2 | e n _ |
5,761,673 |
| 3 | _ d e |
4,088,356 |
| 4 | e t _ |
3,830,236 |
| 5 | _ i _ |
3,324,144 |
4-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ o g _ |
2,559,398 |
| 2 | _ f o r |
1,851,842 |
| 3 | _ a f _ |
1,698,296 |
| 4 | d e n _ |
1,598,615 |
| 5 | _ t i l |
1,395,426 |
5-grams (Subword):
| Rank | N-gram | Count |
|---|---|---|
| 1 | _ t i l _ |
1,111,382 |
| 2 | _ d e n _ |
1,013,475 |
| 3 | _ s o m _ |
926,452 |
| 4 | _ f r a _ |
883,398 |
| 5 | _ f o r _ |
860,091 |
Key Findings
- Best Perplexity: 2-gram (subword) with 291
- Entropy Trend: Decreases with larger n-grams (more predictable)
- Coverage: Top-1000 patterns cover ~21% of corpus
- Recommendation: 4-gram or 5-gram for best predictive performance
3. Markov Chain Evaluation
Results
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|---|---|---|---|---|---|---|
| 1 | Word | 0.9282 | 1.903 | 11.03 | 2,011,765 | 7.2% |
| 1 | Subword | 1.1734 | 2.255 | 7.58 | 8,958 | 0.0% |
| 2 | Word | 0.3698 | 1.292 | 2.34 | 22,156,805 | 63.0% |
| 2 | Subword | 0.6816 | 1.604 | 4.74 | 67,792 | 31.8% |
| 3 | Word | 0.1562 | 1.114 | 1.36 | 51,659,329 | 84.4% |
| 3 | Subword | 0.7837 | 1.722 | 4.70 | 321,234 | 21.6% |
| 4 | Word | 0.0627 π | 1.044 | 1.11 | 69,884,622 | 93.7% |
| 4 | Subword | 0.7511 | 1.683 | 3.88 | 1,508,279 | 24.9% |
Generated Text Samples (Word-based)
Below are text samples generated from each word-based Markov chain model:
Context Size 1:
i sverige bernadotte en tidligere premierminister vladimΓr vaΕ‘ΓΔek tjekkisk eller med langt de flest...og kortlagte dertil uhensigtsmΓ¦ssige reaktionsmΓΈnstre pΓ₯ denne slags rum som et individuelt hold fra...af det eneste gang i lΓ¦lehe lunden og shimonoseki afstod unionen og sydlige ishav og egyptiske
Context Size 2:
er en aristokrat fra oneglia pΓ₯ en figur pΓ₯ fordi de manglede stadig konkrete beviser det objektseksterne henvisninger fra nederlandene fra flandern og champagne fra reims til danmark og derpaa ble...til at Γ₯bne sine egne retoriske fΓ¦rdigheder selvom de ikke mangler det umiddelbares friskhed inspira...
Context Size 3:
referencer eksterne henvisninger 05 i vejle i alt var omkring 100 000 lysΓ₯r og en tykkelse af cirkaeksterne henvisninger fra mozambique fra maputo ved sommer ol mestre fra usa sΓΈlvmedaljevindere fra ...en del af moskenes kommune i nordland fylke i norge med et underskud pΓ₯ godt Γ©n million kroner
Context Size 4:
referencer eksterne henvisninger fra storbritannien medaljevindere i gymnastik mestre fra grækenland...fra danmark fra danmark af videnskabernes selskab i dansk biografisk leksikon fra danmark thomas 1 f...eksterne henvisninger fra danmark film fra fra nordisk film dramafilm fra danmark instrueret af augu...
Generated Text Samples (Subword-based)
Below are text samples generated from each subword-based Markov chain model:
Context Size 1:
_het_i_ldshic._kenoge_der_8.a_t.rerliolin,_opon_
Context Size 2:
er_ers_kum._ten_ee_asterdyra_et_foen_i_kitler_være_
Context Size 3:
er_randsbog_blev_pen_i_han_ver_guldv_det_af_daktat_og_
Context Size 4:
_og_kristia_schlesw_forfattish_music_d_af_storia_italiste
Key Findings
- Best Predictability: Context-4 (word) with 93.7% predictability
- Branching Factor: Decreases with context size (more deterministic)
- Memory Trade-off: Larger contexts require more storage (1,508,279 contexts)
- Recommendation: Context-3 or Context-4 for text generation
4. Vocabulary Analysis
Statistics
| Metric | Value |
|---|---|
| Vocabulary Size | 885,946 |
| Total Tokens | 86,775,295 |
| Mean Frequency | 97.95 |
| Median Frequency | 4 |
| Frequency Std Dev | 6460.78 |
Most Common Words
| Rank | Word | Frequency |
|---|---|---|
| 1 | i | 3,396,891 |
| 2 | og | 2,568,581 |
| 3 | af | 1,716,528 |
| 4 | en | 1,361,402 |
| 5 | til | 1,134,702 |
| 6 | er | 1,086,363 |
| 7 | den | 1,040,601 |
| 8 | at | 980,457 |
| 9 | pΓ₯ | 948,450 |
| 10 | som | 939,070 |
Least Common Words (from vocabulary)
| Rank | Word | Frequency |
|---|---|---|
| 1 | elektronikinteresserede | 2 |
| 2 | sinoefloden | 2 |
| 3 | deathconsciousness | 2 |
| 4 | folkedanseforeninger | 2 |
| 5 | affranchi | 2 |
| 6 | superfilmen | 2 |
| 7 | kettletoft | 2 |
| 8 | sandays | 2 |
| 9 | crummack | 2 |
| 10 | rousays | 2 |
Zipf's Law Analysis
| Metric | Value |
|---|---|
| Zipf Coefficient | 1.0001 |
| RΒ² (Goodness of Fit) | 0.998027 |
| Adherence Quality | excellent |
Coverage Analysis
| Top N Words | Coverage |
|---|---|
| Top 100 | 38.2% |
| Top 1,000 | 58.1% |
| Top 5,000 | 73.3% |
| Top 10,000 | 79.5% |
Key Findings
- Zipf Compliance: RΒ²=0.9980 indicates excellent adherence to Zipf's law
- High Frequency Dominance: Top 100 words cover 38.2% of corpus
- Long Tail: 875,946 words needed for remaining 20.5% coverage
5. Word Embeddings Evaluation
5.1 Cross-Lingual Alignment
5.2 Model Comparison
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|---|---|---|---|---|---|
| mono_32d | 32 | 0.7924 π | 0.3816 | N/A | N/A |
| mono_64d | 64 | 0.7720 | 0.3058 | N/A | N/A |
| mono_128d | 128 | 0.7142 | 0.2314 | N/A | N/A |
| aligned_32d | 32 | 0.7924 | 0.3910 | 0.4140 | 0.7940 |
| aligned_64d | 64 | 0.7720 | 0.3076 | 0.6360 | 0.9000 |
| aligned_128d | 128 | 0.7142 | 0.2447 | 0.7560 | 0.9480 |
Key Findings
- Best Isotropy: mono_32d with 0.7924 (more uniform distribution)
- Semantic Density: Average pairwise similarity of 0.3104. Lower values indicate better semantic separation.
- Alignment Quality: Aligned models achieve up to 75.6% R@1 in cross-lingual retrieval.
- Recommendation: 128d aligned for best cross-lingual performance
6. Morphological Analysis (Experimental)
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
6.1 Productivity & Complexity
| Metric | Value | Interpretation | Recommendation |
|---|---|---|---|
| Productivity Index | 5.000 | High morphological productivity | Reliable analysis |
| Idiomaticity Gap | -0.739 | Low formulaic content | - |
6.2 Affix Inventory (Productive Units)
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
Productive Prefixes
| Prefix | Examples |
|---|
Productive Suffixes
| Suffix | Examples |
|---|---|
-e |
uforfalskede, ledocarpaceae, hærgende |
-n |
fjerntogsperron, flexlinjen, industriudstillingen |
-s |
bialiks, epicurus, ratios |
-r |
bredevandsbakker, provinshertugdΓΈmmer, linseskyer |
-er |
bredevandsbakker, provinshertugdΓΈmmer, linseskyer |
-en |
flexlinjen, industriudstillingen, jordbundslæren |
-et |
affrikeret, polyarkiet, panserkorpset |
-ne |
heatene, beslutningsevne, skillingsviserne |
6.3 Bound Stems (Lexical Roots)
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
| Stem | Cohesion | Substitutability | Examples |
|---|---|---|---|
irke |
2.09x | 181 contexts | birke, virke, dirke |
elig |
1.65x | 256 contexts | helig, selig, zelig |
embe |
2.00x | 89 contexts | tembe, rembe, embed |
nger |
1.45x | 439 contexts | inger, enger, anger |
tisk |
1.73x | 152 contexts | tiske, etisk, tiski |
ndel |
1.42x | 393 contexts | andel, endel, ndele |
mber |
1.52x | 264 contexts | imber, amber, ember |
nmar |
1.77x | 85 contexts | anmary, enmark, donmar |
lsen |
1.52x | 174 contexts | elsen, Γ³lsen, olsen |
rste |
1.33x | 307 contexts | erste, fΓΈrste, fyrste |
rden |
1.38x | 227 contexts | erden, urden, arden |
oner |
1.34x | 260 contexts | zoner, joner, loner |
6.4 Affix Compatibility (Co-occurrence)
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
No significant affix co-occurrences detected.
6.5 Recursive Morpheme Segmentation
Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).
| Word | Suggested Split | Confidence | Stem |
|---|---|---|---|
| profeterne | prof-et-er-ne |
7.5 | prof |
| regierende | regi-er-en-de |
7.5 | regi |
| kunstkritikeres | kunstkritik-er-es |
6.0 | kunstkritik |
| buccaneer | bucca-ne-er |
6.0 | bucca |
| udvikleres | udvikl-er-es |
6.0 | udvikl |
| hΓ₯ndredskaberne | hΓ₯ndredskab-er-ne |
6.0 | hΓ₯ndredskab |
| bolværkerne | bolværk-er-ne |
6.0 | bolværk |
| autogenereret | autog-en-er-er-et |
6.0 | autog |
| fællesgraven | fællesgrav-en |
4.5 | fællesgrav |
| feltflyvepladser | feltflyveplads-er |
4.5 | feltflyveplads |
| sangtrioen | sangtrio-en |
4.5 | sangtrio |
| teknologiparken | teknologipark-en |
4.5 | teknologipark |
| finnmarken | finnmark-en |
4.5 | finnmark |
| patriarker | patriark-er |
4.5 | patriark |
| synonymordbogen | synonymordbog-en |
4.5 | synonymordbog |
6.6 Linguistic Interpretation
Automated Insight: The language Danish shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
7. Summary & Recommendations
Production Recommendations
| Component | Recommended | Rationale |
|---|---|---|
| Tokenizer | 64k BPE | Best compression (4.56x) |
| N-gram | 2-gram | Lowest perplexity (291) |
| Markov | Context-4 | Highest predictability (93.7%) |
| Embeddings | 100d | Balanced semantic capture and isotropy |
Appendix: Metrics Glossary & Interpretation Guide
This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.
Tokenizer Metrics
Compression Ratio
Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.
Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.
What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.
Average Token Length (Fertility)
Definition: Mean number of characters per token produced by the tokenizer.
Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.
What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.
Unknown Token Rate (OOV Rate)
Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.
Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.
What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.
N-gram Model Metrics
Perplexity
Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.
Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.
What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.
Entropy
Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.
Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.
What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.
Coverage (Top-K)
Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.
Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.
What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.
Markov Chain Metrics
Average Entropy
Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.
Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).
What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.
Branching Factor
Definition: Average number of unique next tokens observed for each context.
Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).
What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.
Predictability
Definition: Derived metric: (1 - normalized_entropy) Γ 100%. Indicates how deterministic the model's predictions are.
Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.
What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.
Vocabulary & Zipf's Law Metrics
Zipf's Coefficient
Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.
Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.
What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.
RΒ² (Coefficient of Determination)
Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.
Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.
What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.
Vocabulary Coverage
Definition: Cumulative percentage of corpus tokens accounted for by the top N words.
Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.
What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.
Word Embedding Metrics
Isotropy
Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.
Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.
What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.
Average Norm
Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.
Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.
What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).
Cosine Similarity
Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).
Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.
What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.
t-SNE Visualization
Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.
Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.
What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.
General Interpretation Guidelines
- Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
- Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
- Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
- Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
- Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.
Visualizations Index
| Visualization | Description |
|---|---|
| Tokenizer Compression | Compression ratios by vocabulary size |
| Tokenizer Fertility | Average token length by vocabulary |
| Tokenizer OOV | Unknown token rates |
| Tokenizer Total Tokens | Total tokens by vocabulary |
| N-gram Perplexity | Perplexity by n-gram size |
| N-gram Entropy | Entropy by n-gram size |
| N-gram Coverage | Top pattern coverage |
| N-gram Unique | Unique n-gram counts |
| Markov Entropy | Entropy by context size |
| Markov Branching | Branching factor by context |
| Markov Contexts | Unique context counts |
| Zipf's Law | Frequency-rank distribution with fit |
| Vocab Frequency | Word frequency distribution |
| Top 20 Words | Most frequent words |
| Vocab Coverage | Cumulative coverage curve |
| Embedding Isotropy | Vector space uniformity |
| Embedding Norms | Vector magnitude distribution |
| Embedding Similarity | Word similarity heatmap |
| Nearest Neighbors | Similar words for key terms |
| t-SNE Words | 2D word embedding visualization |
| t-SNE Sentences | 2D sentence embedding visualization |
| Position Encoding | Encoding method comparison |
| Model Sizes | Storage requirements |
| Performance Dashboard | Comprehensive performance overview |
About This Project
Data Source
Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.
Project
A project by Wikilangs - Open-source NLP models for every Wikipedia language.
Maintainer
Citation
If you use these models in your research, please cite:
@misc{wikilangs2025,
author = {Kamali, Omar},
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
year = {2025},
doi = {10.5281/zenodo.18073153},
publisher = {Zenodo},
url = {https://huggingface.co/wikilangs}
institution = {Omneity Labs}
}
License
MIT License - Free for academic and commercial use.
Links
- π Website: wikilangs.org
- π€ Models: huggingface.co/wikilangs
- π Data: wikipedia-monthly
- π€ Author: Omar Kamali
- π€ Sponsor: Featherless AI
Generated by Wikilangs Models Pipeline
Report Date: 2026-01-08 09:40:43



















