Dimli (individual language) - Wikilangs Models

Comprehensive Research Report & Full Ablation Study

This repository contains NLP models trained and evaluated by Wikilangs, specifically on Dimli (individual language) Wikipedia data. We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.

πŸ“‹ Repository Contents

Models & Assets

  • Tokenizers (8k, 16k, 32k, 64k)
  • N-gram models (2, 3, 4, 5-gram)
  • Markov chains (context of 1, 2, 3, 4 and 5)
  • Subword N-gram and Markov chains
  • Embeddings in various sizes and dimensions (aligned and unaligned)
  • Language Vocabulary
  • Language Statistics

Performance Dashboard

Analysis and Evaluation


1. Tokenizer Evaluation

Tokenizer Compression

Tokenizer Fertility

Tokenizer OOV

Total Tokens

Results

Vocab Size Compression Avg Token Len UNK Rate Total Tokens
8k 3.111x 3.11 0.0973% 324,747
16k 3.420x 3.42 0.1070% 295,419
32k 3.692x 3.70 0.1155% 273,644
64k 3.946x πŸ† 3.95 0.1234% 256,028

Tokenization Examples

Below are sample sentences tokenized with each vocabulary size:

Sample 1: .weir, nameyΓͺ bandΔ±ra sewiyaya serΓͺna jeneriko (be Δ°ngΔ±lΔ±zki: Generic top-level ...

Vocab Tokens Count
8k ▁. we ir , ▁nameyΓͺ ▁bandΔ±ra ▁sewiyaya ▁serΓͺna ▁jeneriko ▁( ... (+19 more) 29
16k ▁. we ir , ▁nameyΓͺ ▁bandΔ±ra ▁sewiyaya ▁serΓͺna ▁jeneriko ▁( ... (+19 more) 29
32k ▁. we ir , ▁nameyΓͺ ▁bandΔ±ra ▁sewiyaya ▁serΓͺna ▁jeneriko ▁( ... (+19 more) 29
64k ▁. we ir , ▁nameyΓͺ ▁bandΔ±ra ▁sewiyaya ▁serΓͺna ▁jeneriko ▁( ... (+19 more) 29

Sample 2: Bègues, dewleta Fransa de, mıntıqaya Auvergne-Rhône-Alpes miyan de yew komuna wı...

Vocab Tokens Count
8k ▁b Γ¨ gues , ▁dewleta ▁fransa ▁de , ▁mΔ±ntΔ±qaya ▁auvergne ... (+15 more) 25
16k ▁b Γ¨ gues , ▁dewleta ▁fransa ▁de , ▁mΔ±ntΔ±qaya ▁auvergne ... (+15 more) 25
32k ▁b Γ¨ gues , ▁dewleta ▁fransa ▁de , ▁mΔ±ntΔ±qaya ▁auvergne ... (+15 more) 25
64k ▁bΓ¨ gues , ▁dewleta ▁fransa ▁de , ▁mΔ±ntΔ±qaya ▁auvergne - ... (+14 more) 24

Sample 3: Cosne-d'Allier, dewleta Fransa de, mΔ±ntΔ±qaya Overn-Ron-Alpan miyan de yew komuna...

Vocab Tokens Count
8k ▁cos ne - d ' allier , ▁dewleta ▁fransa ▁de ... (+21 more) 31
16k ▁cos ne - d ' allier , ▁dewleta ▁fransa ▁de ... (+19 more) 29
32k ▁cos ne - d ' allier , ▁dewleta ▁fransa ▁de ... (+18 more) 28
64k ▁cos ne - d ' allier , ▁dewleta ▁fransa ▁de ... (+18 more) 28

Key Findings

  • Best Compression: 64k achieves 3.946x compression
  • Lowest UNK Rate: 8k with 0.0973% unknown tokens
  • Trade-off: Larger vocabularies improve compression but increase model size
  • Recommendation: 32k vocabulary provides optimal balance for production use

2. N-gram Model Evaluation

N-gram Perplexity

N-gram Unique

N-gram Coverage

Results

N-gram Variant Perplexity Entropy Unique N-grams Top-100 Coverage Top-1000 Coverage
2-gram Word 2,900 11.50 32,472 37.7% 66.7%
2-gram Subword 361 πŸ† 8.50 6,487 60.7% 98.0%
3-gram Word 2,363 11.21 37,780 38.7% 72.4%
3-gram Subword 3,111 11.60 45,197 22.3% 67.0%
4-gram Word 3,683 11.85 77,102 34.1% 68.2%
4-gram Subword 15,466 13.92 232,167 13.2% 42.0%
5-gram Word 3,179 11.63 61,892 33.7% 70.0%
5-gram Subword 42,786 15.38 597,917 10.1% 34.5%

Top 5 N-grams by Size

2-grams (Word):

Rank N-gram Count
1 de ca 13,749
2 de mΔ±ntΔ±qaya 12,351
3 ca gΓͺno 11,945
4 fransa de 11,892
5 de yew 11,359

3-grams (Word):

Rank N-gram Count
1 fransa de mΔ±ntΔ±qaya 11,768
2 dewleta fransa de 11,147
3 de ca gΓͺno 10,321
4 bΔ±vΓͺnΓͺn lista komunanΓͺ 8,041
5 katalogΓͺ neweyΓͺ pΓͺroyi 7,026

4-grams (Word):

Rank N-gram Count
1 dewleta fransa de mΔ±ntΔ±qaya 11,101
2 katalogΓͺ neweyΓͺ pΓͺroyi de 7,025
3 cΔ±sΔ±m katalogΓͺ neweyΓͺ pΓͺroyi 7,025
4 no cΔ±sΔ±m katalogΓͺ neweyΓͺ 6,678
5 lista cΔ±smanΓͺ ngc gΔ±reyΓͺ 6,644

5-grams (Word):

Rank N-gram Count
1 cΔ±sΔ±m katalogΓͺ neweyΓͺ pΓͺroyi de 7,024
2 no cΔ±sΔ±m katalogΓͺ neweyΓͺ pΓͺroyi 6,678
3 lista cΔ±smanΓͺ ngc gΔ±reyΓͺ teberi 6,644
4 de ca gΓͺno de terefΓͺ 5,997
5 asmΓͺniyo no cΔ±sΔ±m katalogΓͺ neweyΓͺ 5,870

2-grams (Subword):

Rank N-gram Count
1 a _ 300,863
2 e _ 289,730
3 a n 274,481
4 Γͺ _ 267,322
5 _ d 217,060

3-grams (Subword):

Rank N-gram Count
1 _ d e 157,628
2 d e _ 100,392
3 o . _ 73,592
4 n Γͺ _ 68,515
5 i y a 67,461

4-grams (Subword):

Rank N-gram Count
1 _ d e _ 94,419
2 a n Γͺ _ 43,769
3 _ y e w 40,703
4 _ k o m 40,690
5 _ r a _ 38,802

5-grams (Subword):

Rank N-gram Count
1 _ y e w _ 36,954
2 _ k o m u 34,451
3 k o m u n 34,446
4 _ b Δ± v Γͺ 23,569
5 b Δ± v Γͺ n 23,557

Key Findings

  • Best Perplexity: 2-gram (subword) with 361
  • Entropy Trend: Decreases with larger n-grams (more predictable)
  • Coverage: Top-1000 patterns cover ~35% of corpus
  • Recommendation: 4-gram or 5-gram for best predictive performance

3. Markov Chain Evaluation

Markov Entropy

Markov Contexts

Markov Branching

Results

Context Variant Avg Entropy Perplexity Branching Factor Unique Contexts Predictability
1 Word 0.7487 1.680 4.43 220,418 25.1%
1 Subword 0.9728 1.963 6.81 2,853 2.7%
2 Word 0.1773 1.131 1.38 970,777 82.3%
2 Subword 0.8745 1.833 5.24 19,403 12.6%
3 Word 0.0542 1.038 1.10 1,326,261 94.6%
3 Subword 0.7728 1.709 4.01 101,524 22.7%
4 Word 0.0216 πŸ† 1.015 1.04 1,442,368 97.8%
4 Subword 0.6913 1.615 2.98 406,622 30.9%

Generated Text Samples (Word-based)

Below are text samples generated from each word-based Markov chain model:

Context Size 1:

  1. de biyΓͺ ke yew belediyaya sΓ»kΓͺ wayiye nΔ±fus grafikΓͺ diagrami sero gorey serran ra nΔ±fusΓͺ vilasantar
  2. ra nΔ±fusΓͺ anouldi website resayış 14 807 windsor ontario kanada yew qezay lalapaşaya ekonomiye be ro...
  3. yew komunΓͺ aulnois beaufremont de anciyao embΔ±ryani nΔ±fus bΔ±vΓͺnΓͺn qam hewahebur kelek u nameyΓͺ bandΔ±...

Context Size 2:

  1. de ca gΓͺno schleswig holsteini de wΔ±layetΓͺ ardennesi de yew serra teqwimiya seramey biyayış gaius pl...
  2. de mΔ±ntΔ±qaya normandiya de ca gΓͺno xΔ±zmete gesnes en argonne ca gΓͺnΓͺ xΔ±zmete rozerotte de şebekey aw...
  3. ca gΓͺno bΔ±vΓͺnΓͺn lista komunanΓͺ loire atlantique pays de la loire de ca gΓͺna xΔ±zmete escouloubre de

Context Size 3:

  1. fransa de mΔ±ntΔ±qaya occitanie de ca gΓͺna xΔ±zmete trausse de şebekey awe esto Γ» sistemΓͺ kanalizasyoni...
  2. dewleta fransa de mΔ±ntΔ±qaya auvergne rhΓ΄ne alpesi miyan de yew komuna bΔ±vΓͺnΓͺn lista komunanΓͺ seine e...
  3. de ca gΓͺno embΔ±ryani nΔ±fus grafikΓͺ diagrami sero gorey seran ra nΔ±fusΓͺ sandiΓ‘s bΔ±vΓͺnΓͺn belediyey our...

Context Size 4:

  1. dewleta fransa de mΔ±ntΔ±qaya grand esti de wΔ±layetΓͺ vosgesi dero komuni 31 87 km2 ca gΓͺno dormey herb...
  2. katalogΓͺ neweyΓͺ pΓͺroyi de komΓͺ estareyanΓͺ miyan de ca gΓͺno de terefΓͺ i ra keşıf biyo bΔ±vΓͺnΓͺn asmΓͺn g...
  3. cΔ±sΔ±m katalogΓͺ neweyΓͺ pΓͺroyi de komΓͺ estareyanΓͺ miyan de ca gΓͺno de terefΓͺ astronom i ra keşıf biyo ...

Generated Text Samples (Subword-based)

Below are text samples generated from each subword-based Markov chain model:

Context Size 1:

  1. _6_gaus-seyan_zΔ±
  2. eyirdΓͺ_ardullale
  3. anΓͺn_d_usi_n-cet

Context Size 2:

  1. a_fra_hun_no_Γ»_ho
  2. e_letektempar_–_d
  3. anΓͺ_man_lolynsall

Context Size 3:

  1. _de_temΓͺ_ki_sec,_y
  2. de_verneyo_ra_nows
  3. o._telebebat_yΔ±lbΔ±

Context Size 4:

  1. _de_komunΓͺ_wΔ±layetΓͺ
  2. anΓͺ_muzisyeno,_ber_
  3. _yew_film_rol_Γ§akal

Key Findings

  • Best Predictability: Context-4 (word) with 97.8% predictability
  • Branching Factor: Decreases with context size (more deterministic)
  • Memory Trade-off: Larger contexts require more storage (406,622 contexts)
  • Recommendation: Context-3 or Context-4 for text generation

4. Vocabulary Analysis

Zipf's Law

Top Words

Coverage Curve

Statistics

Metric Value
Vocabulary Size 92,779
Total Tokens 2,332,304
Mean Frequency 25.14
Median Frequency 3
Frequency Std Dev 515.39

Most Common Words

Rank Word Frequency
1 de 115,037
2 ra 40,569
3 yew 37,084
4 u 26,509
5 bΔ±vΓͺnΓͺn 23,466
6 Γ» 21,932
7 lista 20,682
8 ca 17,900
9 dewleta 17,340
10 ke 16,742

Least Common Words (from vocabulary)

Rank Word Frequency
1 aksiyongerilim 2
2 vizyonkewtış 2
3 sude 2
4 alΔ±nca 2
5 vurmaz 2
6 dramgerilim 2
7 gΓΌlsoy 2
8 sarsu 2
9 toktamışoğlu 2
10 âğden 2

Zipf's Law Analysis

Metric Value
Zipf Coefficient 1.0696
RΒ² (Goodness of Fit) 0.997357
Adherence Quality excellent

Coverage Analysis

Top N Words Coverage
Top 100 39.8%
Top 1,000 65.1%
Top 5,000 78.5%
Top 10,000 84.0%

Key Findings

  • Zipf Compliance: RΒ²=0.9974 indicates excellent adherence to Zipf's law
  • High Frequency Dominance: Top 100 words cover 39.8% of corpus
  • Long Tail: 82,779 words needed for remaining 16.0% coverage

5. Word Embeddings Evaluation

Embedding Isotropy

Similarity Matrix

t-SNE Words

t-SNE Sentences

5.1 Cross-Lingual Alignment

Alignment Quality

Multilingual t-SNE

5.2 Model Comparison

Model Dimension Isotropy Semantic Density Alignment R@1 Alignment R@10
mono_32d 32 0.8232 0.3686 N/A N/A
mono_64d 64 0.7882 0.3130 N/A N/A
mono_128d 128 0.5576 0.2631 N/A N/A
aligned_32d 32 0.8232 πŸ† 0.3734 0.0360 0.2220
aligned_64d 64 0.7882 0.3026 0.0680 0.3100
aligned_128d 128 0.5576 0.2680 0.1060 0.4260

Key Findings

  • Best Isotropy: aligned_32d with 0.8232 (more uniform distribution)
  • Semantic Density: Average pairwise similarity of 0.3148. Lower values indicate better semantic separation.
  • Alignment Quality: Aligned models achieve up to 10.6% R@1 in cross-lingual retrieval.
  • Recommendation: 128d aligned for best cross-lingual performance

6. Morphological Analysis (Experimental)

This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.

6.1 Productivity & Complexity

Metric Value Interpretation Recommendation
Productivity Index 5.000 High morphological productivity Reliable analysis
Idiomaticity Gap 1.030 High formulaic/idiomatic content -

6.2 Affix Inventory (Productive Units)

These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.

Productive Prefixes

Prefix Examples

Productive Suffixes

Suffix Examples
-an ban, yewbiyayiyan, algan

6.3 Bound Stems (Lexical Roots)

Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.

Stem Cohesion Substitutability Examples
iyay 1.76x 207 contexts niyay, siyay, şiyay
iyan 1.73x 143 contexts biyan, niyan, ziyan
ista 1.71x 64 contexts kista, lista, vista
eber 1.92x 37 contexts teber, zeber, xeber
wlet 2.29x 20 contexts dewlet, dewletu, dewleto
ewle 2.23x 20 contexts dewle, sewle, hewle
leta 1.95x 30 contexts letan, aleta, ğeleta
nter 1.78x 41 contexts enter, inter, anter
rans 1.84x 35 contexts crans, frans, trans
laye 2.00x 23 contexts claye, layer, alaye
Δ±ntΔ± 2.38x 12 contexts alΔ±ntΔ±, saΓ§Δ±ntΔ±, Γ§alΔ±ntΔ±
ntΔ±q 1.93x 18 contexts mantΔ±q, mentΔ±q, mentΔ±qi

6.4 Affix Compatibility (Co-occurrence)

This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.

No significant affix co-occurrences detected.

6.5 Recursive Morpheme Segmentation

Using Recursive Hierarchical Substitutability, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., prefix-prefix-root-suffix).

Word Suggested Split Confidence Stem
vınderdışan vınderdış-an 4.5 vınderdış
hΔ±kumetan hΔ±kumet-an 4.5 hΔ±kumet
pΓͺxamberan pΓͺxamber-an 4.5 pΓͺxamber
destnuşteyan destnuştey-an 4.5 destnuştey
sekuleran sekuler-an 4.5 sekuler
beynelmΔ±lelan beynelmΔ±lel-an 4.5 beynelmΔ±lel
karxaneyan karxaney-an 4.5 karxaney
meqaleyan meqaley-an 4.5 meqaley
qerebegan qerebeg-an 1.5 qerebeg
boğazlıyan boğazlıy-an 1.5 boğazlıy
Γ§Δ±ldirtan Γ§Δ±ldirt-an 1.5 Γ§Δ±ldirt
meheliyan meheliy-an 1.5 meheliy
saskatchewan saskatchew-an 1.5 saskatchew
kalimantan kalimant-an 1.5 kalimant
gentleman gentlem-an 1.5 gentlem

6.6 Linguistic Interpretation

Automated Insight: The language Dimli (individual language) shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.

Note on Idiomaticity: The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.


7. Summary & Recommendations

Performance Dashboard

Production Recommendations

Component Recommended Rationale
Tokenizer 64k BPE Best compression (3.95x)
N-gram 2-gram Lowest perplexity (361)
Markov Context-4 Highest predictability (97.8%)
Embeddings 100d Balanced semantic capture and isotropy

Appendix: Metrics Glossary & Interpretation Guide

This section provides definitions, intuitions, and guidance for interpreting the metrics used throughout this report.

Tokenizer Metrics

Compression Ratio

Definition: The ratio of characters to tokens (chars/token). Measures how efficiently the tokenizer represents text.

Intuition: Higher compression means fewer tokens needed to represent the same text, reducing sequence lengths for downstream models. A 3x compression means ~3 characters per token on average.

What to seek: Higher is generally better for efficiency, but extremely high compression may indicate overly aggressive merging that loses morphological information.

Average Token Length (Fertility)

Definition: Mean number of characters per token produced by the tokenizer.

Intuition: Reflects the granularity of tokenization. Longer tokens capture more context but may struggle with rare words; shorter tokens are more flexible but increase sequence length.

What to seek: Balance between 2-5 characters for most languages. Arabic/morphologically-rich languages may benefit from slightly longer tokens.

Unknown Token Rate (OOV Rate)

Definition: Percentage of tokens that map to the unknown/UNK token, indicating words the tokenizer cannot represent.

Intuition: Lower OOV means better vocabulary coverage. High OOV indicates the tokenizer encounters many unseen character sequences.

What to seek: Below 1% is excellent; below 5% is acceptable. BPE tokenizers typically achieve very low OOV due to subword fallback.

N-gram Model Metrics

Perplexity

Definition: Measures how "surprised" the model is by test data. Mathematically: 2^(cross-entropy). Lower values indicate better prediction.

Intuition: If perplexity is 100, the model is as uncertain as if choosing uniformly among 100 options at each step. A perplexity of 10 means effectively choosing among 10 equally likely options.

What to seek: Lower is better. Perplexity decreases with larger n-grams (more context). Values vary widely by language and corpus size.

Entropy

Definition: Average information content (in bits) needed to encode the next token given the context. Related to perplexity: perplexity = 2^entropy.

Intuition: High entropy means high uncertainty/randomness; low entropy means predictable patterns. Natural language typically has entropy between 1-4 bits per character.

What to seek: Lower entropy indicates more predictable text patterns. Entropy should decrease as n-gram size increases.

Coverage (Top-K)

Definition: Percentage of corpus occurrences explained by the top K most frequent n-grams.

Intuition: High coverage with few patterns indicates repetitive/formulaic text; low coverage suggests diverse vocabulary usage.

What to seek: Depends on use case. For language modeling, moderate coverage (40-60% with top-1000) is typical for natural text.

Markov Chain Metrics

Average Entropy

Definition: Mean entropy across all contexts, measuring average uncertainty in next-word prediction.

Intuition: Lower entropy means the model is more confident about what comes next. Context-1 has high entropy (many possible next words); Context-4 has low entropy (few likely continuations).

What to seek: Decreasing entropy with larger context sizes. Very low entropy (<0.1) indicates highly deterministic transitions.

Branching Factor

Definition: Average number of unique next tokens observed for each context.

Intuition: High branching = many possible continuations (flexible but uncertain); low branching = few options (predictable but potentially repetitive).

What to seek: Branching factor should decrease with context size. Values near 1.0 indicate nearly deterministic chains.

Predictability

Definition: Derived metric: (1 - normalized_entropy) Γ— 100%. Indicates how deterministic the model's predictions are.

Intuition: 100% predictability means the next word is always certain; 0% means completely random. Real text falls between these extremes.

What to seek: Higher predictability for text generation quality, but too high (>98%) may produce repetitive output.

Vocabulary & Zipf's Law Metrics

Zipf's Coefficient

Definition: The slope of the log-log plot of word frequency vs. rank. Zipf's law predicts this should be approximately -1.

Intuition: A coefficient near -1 indicates the corpus follows natural language patterns where a few words are very common and most words are rare.

What to seek: Values between -0.8 and -1.2 indicate healthy natural language distribution. Deviations may suggest domain-specific or artificial text.

RΒ² (Coefficient of Determination)

Definition: Measures how well the linear fit explains the frequency-rank relationship. Ranges from 0 to 1.

Intuition: RΒ² near 1.0 means the data closely follows Zipf's law; lower values indicate deviation from expected word frequency patterns.

What to seek: RΒ² > 0.95 is excellent; > 0.99 indicates near-perfect Zipf adherence typical of large natural corpora.

Vocabulary Coverage

Definition: Cumulative percentage of corpus tokens accounted for by the top N words.

Intuition: Shows how concentrated word usage is. If top-100 words cover 50% of text, the corpus relies heavily on common words.

What to seek: Top-100 covering 30-50% is typical. Higher coverage indicates more repetitive text; lower suggests richer vocabulary.

Word Embedding Metrics

Isotropy

Definition: Measures how uniformly distributed vectors are in the embedding space. Computed as the ratio of minimum to maximum singular values.

Intuition: High isotropy (near 1.0) means vectors spread evenly in all directions; low isotropy means vectors cluster in certain directions, reducing expressiveness.

What to seek: Higher isotropy generally indicates better-quality embeddings. Values > 0.1 are reasonable; > 0.3 is good. Lower-dimensional embeddings tend to have higher isotropy.

Average Norm

Definition: Mean magnitude (L2 norm) of word vectors in the embedding space.

Intuition: Indicates the typical "length" of vectors. Consistent norms suggest stable training; high variance may indicate some words are undertrained.

What to seek: Relatively consistent norms across models. The absolute value matters less than consistency (low std deviation).

Cosine Similarity

Definition: Measures angular similarity between vectors, ranging from -1 (opposite) to 1 (identical direction).

Intuition: Words with similar meanings should have high cosine similarity. This is the standard metric for semantic relatedness in embeddings.

What to seek: Semantically related words should score > 0.5; unrelated words should be near 0. Synonyms often score > 0.7.

t-SNE Visualization

Definition: t-Distributed Stochastic Neighbor Embedding - a dimensionality reduction technique that preserves local structure for visualization.

Intuition: Clusters in t-SNE plots indicate groups of semantically related words. Spread indicates vocabulary diversity; tight clusters suggest semantic coherence.

What to seek: Meaningful clusters (e.g., numbers together, verbs together). Avoid over-interpreting distances - t-SNE preserves local, not global, structure.

General Interpretation Guidelines

  1. Compare within model families: Metrics are most meaningful when comparing models of the same type (e.g., 8k vs 64k tokenizer).
  2. Consider trade-offs: Better performance on one metric often comes at the cost of another (e.g., compression vs. OOV rate).
  3. Context matters: Optimal values depend on downstream tasks. Text generation may prioritize different metrics than classification.
  4. Corpus influence: All metrics are influenced by corpus characteristics. Wikipedia text differs from social media or literature.
  5. Language-specific patterns: Morphologically rich languages (like Arabic) may show different optimal ranges than analytic languages.

Visualizations Index

Visualization Description
Tokenizer Compression Compression ratios by vocabulary size
Tokenizer Fertility Average token length by vocabulary
Tokenizer OOV Unknown token rates
Tokenizer Total Tokens Total tokens by vocabulary
N-gram Perplexity Perplexity by n-gram size
N-gram Entropy Entropy by n-gram size
N-gram Coverage Top pattern coverage
N-gram Unique Unique n-gram counts
Markov Entropy Entropy by context size
Markov Branching Branching factor by context
Markov Contexts Unique context counts
Zipf's Law Frequency-rank distribution with fit
Vocab Frequency Word frequency distribution
Top 20 Words Most frequent words
Vocab Coverage Cumulative coverage curve
Embedding Isotropy Vector space uniformity
Embedding Norms Vector magnitude distribution
Embedding Similarity Word similarity heatmap
Nearest Neighbors Similar words for key terms
t-SNE Words 2D word embedding visualization
t-SNE Sentences 2D sentence embedding visualization
Position Encoding Encoding method comparison
Model Sizes Storage requirements
Performance Dashboard Comprehensive performance overview

About This Project

Data Source

Models trained on wikipedia-monthly - a monthly snapshot of Wikipedia articles across 300+ languages.

Project

A project by Wikilangs - Open-source NLP models for every Wikipedia language.

Maintainer

Omar Kamali - Omneity Labs

Citation

If you use these models in your research, please cite:

@misc{wikilangs2025,
  author = {Kamali, Omar},
  title = {Wikilangs: Open NLP Models for Wikipedia Languages},
  year = {2025},
  doi = {10.5281/zenodo.18073153},
  publisher = {Zenodo},
  url = {https://huggingface.co/wikilangs}
  institution = {Omneity Labs}
}

License

MIT License - Free for academic and commercial use.

Links


Generated by Wikilangs Models Pipeline

Report Date: 2026-01-04 02:29:30

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Dataset used to train wikilangs/diq