Upload all models and assets for eml (latest)
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- README.md +329 -135
- models/embeddings/aligned/eml_128d.bin +3 -0
- models/embeddings/aligned/eml_128d.meta.json +1 -0
- models/embeddings/aligned/eml_128d.projection.npy +3 -0
- models/embeddings/aligned/eml_128d_metadata.json +8 -0
- models/embeddings/aligned/eml_32d.bin +3 -0
- models/embeddings/aligned/eml_32d.meta.json +1 -0
- models/embeddings/aligned/eml_32d.projection.npy +3 -0
- models/embeddings/aligned/eml_32d_metadata.json +8 -0
- models/embeddings/aligned/eml_64d.bin +3 -0
- models/embeddings/aligned/eml_64d.meta.json +1 -0
- models/embeddings/aligned/eml_64d.projection.npy +3 -0
- models/embeddings/aligned/eml_64d_metadata.json +8 -0
- models/embeddings/monolingual/eml_128d.bin +2 -2
- models/embeddings/monolingual/eml_128d_metadata.json +5 -3
- models/embeddings/monolingual/eml_32d.bin +2 -2
- models/embeddings/monolingual/eml_32d_metadata.json +5 -3
- models/embeddings/monolingual/eml_64d.bin +2 -2
- models/embeddings/monolingual/eml_64d_metadata.json +5 -3
- models/subword_markov/eml_markov_ctx1_subword.parquet +2 -2
- models/subword_markov/eml_markov_ctx1_subword_metadata.json +2 -2
- models/subword_markov/eml_markov_ctx2_subword.parquet +2 -2
- models/subword_markov/eml_markov_ctx2_subword_metadata.json +2 -2
- models/subword_markov/eml_markov_ctx3_subword.parquet +2 -2
- models/subword_markov/eml_markov_ctx3_subword_metadata.json +2 -2
- models/subword_markov/eml_markov_ctx4_subword.parquet +2 -2
- models/subword_markov/eml_markov_ctx4_subword_metadata.json +2 -2
- models/subword_ngram/eml_2gram_subword.parquet +2 -2
- models/subword_ngram/eml_2gram_subword_metadata.json +2 -2
- models/subword_ngram/eml_3gram_subword.parquet +2 -2
- models/subword_ngram/eml_3gram_subword_metadata.json +2 -2
- models/subword_ngram/eml_4gram_subword.parquet +2 -2
- models/subword_ngram/eml_4gram_subword_metadata.json +2 -2
- models/subword_ngram/eml_5gram_subword.parquet +3 -0
- models/subword_ngram/eml_5gram_subword_metadata.json +7 -0
- models/tokenizer/eml_tokenizer_16k.model +2 -2
- models/tokenizer/eml_tokenizer_16k.vocab +0 -0
- models/tokenizer/eml_tokenizer_32k.model +2 -2
- models/tokenizer/eml_tokenizer_32k.vocab +0 -0
- models/tokenizer/eml_tokenizer_8k.model +2 -2
- models/tokenizer/eml_tokenizer_8k.vocab +0 -0
- models/vocabulary/eml_vocabulary.parquet +2 -2
- models/vocabulary/eml_vocabulary_metadata.json +10 -9
- models/word_markov/eml_markov_ctx1_word.parquet +2 -2
- models/word_markov/eml_markov_ctx1_word_metadata.json +2 -2
- models/word_markov/eml_markov_ctx2_word.parquet +2 -2
- models/word_markov/eml_markov_ctx2_word_metadata.json +2 -2
- models/word_markov/eml_markov_ctx3_word.parquet +2 -2
- models/word_markov/eml_markov_ctx3_word_metadata.json +2 -2
.gitattributes
CHANGED
|
@@ -39,3 +39,4 @@ visualizations/position_encoding_comparison.png filter=lfs diff=lfs merge=lfs -t
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 39 |
visualizations/tsne_sentences.png filter=lfs diff=lfs merge=lfs -text
|
| 40 |
visualizations/tsne_words.png filter=lfs diff=lfs merge=lfs -text
|
| 41 |
visualizations/zipf_law.png filter=lfs diff=lfs merge=lfs -text
|
| 42 |
+
visualizations/embedding_tsne_multilingual.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
language: eml
|
| 3 |
-
language_name:
|
| 4 |
language_family: romance_galloitalic
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
@@ -10,11 +10,21 @@ tags:
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- monolingual
|
| 14 |
- family-romance_galloitalic
|
| 15 |
license: mit
|
| 16 |
library_name: wikilangs
|
| 17 |
-
pipeline_tag:
|
| 18 |
datasets:
|
| 19 |
- omarkamali/wikipedia-monthly
|
| 20 |
dataset_info:
|
|
@@ -23,20 +33,20 @@ dataset_info:
|
|
| 23 |
metrics:
|
| 24 |
- name: best_compression_ratio
|
| 25 |
type: compression
|
| 26 |
-
value: 3.
|
| 27 |
- name: best_isotropy
|
| 28 |
type: isotropy
|
| 29 |
-
value: 0.
|
| 30 |
- name: vocabulary_size
|
| 31 |
type: vocab
|
| 32 |
-
value:
|
| 33 |
-
generated:
|
| 34 |
---
|
| 35 |
|
| 36 |
-
#
|
| 37 |
## Comprehensive Research Report & Full Ablation Study
|
| 38 |
|
| 39 |
-
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **
|
| 40 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 41 |
|
| 42 |
## 📋 Repository Contents
|
|
@@ -44,12 +54,13 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 44 |
### Models & Assets
|
| 45 |
|
| 46 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 47 |
-
- N-gram models (2, 3, 4-gram)
|
| 48 |
-
- Markov chains (context of 1, 2, 3 and
|
| 49 |
- Subword N-gram and Markov chains
|
| 50 |
-
- Embeddings in various sizes and dimensions
|
| 51 |
- Language Vocabulary
|
| 52 |
- Language Statistics
|
|
|
|
| 53 |

|
| 54 |
|
| 55 |
### Analysis and Evaluation
|
|
@@ -59,7 +70,8 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 59 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 60 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 61 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 62 |
-
- [6.
|
|
|
|
| 63 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 64 |
- [Visualizations Index](#visualizations-index)
|
| 65 |
|
|
@@ -68,54 +80,53 @@ We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and
|
|
| 68 |
|
| 69 |

|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
### Results
|
| 72 |
|
| 73 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 74 |
|------------|-------------|---------------|----------|--------------|
|
| 75 |
-
| **8k** |
|
| 76 |
-
| **16k** | 3.
|
| 77 |
-
| **32k** | 3.
|
| 78 |
-
| **64k** | 3.867x 🏆 | 3.83 | 0.1973% | 165,756 |
|
| 79 |
|
| 80 |
### Tokenization Examples
|
| 81 |
|
| 82 |
Below are sample sentences tokenized with each vocabulary size:
|
| 83 |
|
| 84 |
-
**Sample 1:** `
|
| 85 |
-
Categoria:CINEMA
|
| 86 |
-
Categoria:Atōr tedésc`
|
| 87 |
|
| 88 |
| Vocab | Tokens | Count |
|
| 89 |
|-------|--------|-------|
|
| 90 |
-
| 8k | `▁
|
| 91 |
-
| 16k | `▁
|
| 92 |
-
| 32k | `▁
|
| 93 |
-
| 64k | `▁categoria : televisione ▁categoria : cinema ▁categoria : atōr ▁tedésc` | 10 |
|
| 94 |
|
| 95 |
-
**Sample 2:** `
|
| 96 |
|
| 97 |
| Vocab | Tokens | Count |
|
| 98 |
|-------|--------|-------|
|
| 99 |
-
| 8k | `▁
|
| 100 |
-
| 16k | `▁
|
| 101 |
-
| 32k | `▁
|
| 102 |
-
| 64k | `▁la ▁ròca ▁o ▁anch ▁ròca ▁san ▁casiàn ▁( rocca ▁san ... (+29 more)` | 39 |
|
| 103 |
|
| 104 |
-
**Sample 3:** `
|
| 105 |
-
Categoria:CITTADITALIA`
|
| 106 |
|
| 107 |
| Vocab | Tokens | Count |
|
| 108 |
|-------|--------|-------|
|
| 109 |
-
| 8k | `▁
|
| 110 |
-
| 16k | `▁
|
| 111 |
-
| 32k | `▁
|
| 112 |
-
| 64k | `▁categoria : geografia ▁categoria : cittaditalia` | 6 |
|
| 113 |
|
| 114 |
|
| 115 |
### Key Findings
|
| 116 |
|
| 117 |
-
- **Best Compression:**
|
| 118 |
-
- **Lowest UNK Rate:** 8k with 0.
|
| 119 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 120 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 121 |
|
|
@@ -124,57 +135,111 @@ Categoria:CITTADITALIA`
|
|
| 124 |
|
| 125 |

|
| 126 |
|
|
|
|
|
|
|
| 127 |

|
| 128 |
|
| 129 |
### Results
|
| 130 |
|
| 131 |
-
| N-gram | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 132 |
-
|
| 133 |
-
| **2-gram** |
|
| 134 |
-
| **2-gram** |
|
| 135 |
-
| **3-gram** |
|
| 136 |
-
| **3-gram** | 2,
|
| 137 |
-
| **4-gram** | 1,
|
| 138 |
-
| **4-gram** |
|
|
|
|
|
|
|
| 139 |
|
| 140 |
### Top 5 N-grams by Size
|
| 141 |
|
| 142 |
-
**2-grams:**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
| Rank | N-gram | Count |
|
| 145 |
|------|--------|-------|
|
| 146 |
-
| 1 | `
|
| 147 |
-
| 2 |
|
| 148 |
-
| 3 | `
|
| 149 |
-
| 4 | `l
|
| 150 |
-
| 5 | `
|
| 151 |
|
| 152 |
-
**
|
| 153 |
|
| 154 |
| Rank | N-gram | Count |
|
| 155 |
|------|--------|-------|
|
| 156 |
-
| 1 | `
|
| 157 |
-
| 2 | `
|
| 158 |
-
| 3 | `l
|
| 159 |
-
| 4 | `
|
| 160 |
-
| 5 | `
|
| 161 |
|
| 162 |
-
**
|
| 163 |
|
| 164 |
| Rank | N-gram | Count |
|
| 165 |
|------|--------|-------|
|
| 166 |
-
| 1 | `
|
| 167 |
-
| 2 |
|
| 168 |
-
| 3 | `
|
| 169 |
-
| 4 |
|
| 170 |
-
| 5 | `
|
| 171 |
|
| 172 |
|
| 173 |
### Key Findings
|
| 174 |
|
| 175 |
-
- **Best Perplexity:** 2-gram with
|
| 176 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 177 |
-
- **Coverage:** Top-1000 patterns cover ~
|
| 178 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 179 |
|
| 180 |
---
|
|
@@ -182,55 +247,86 @@ Categoria:CITTADITALIA`
|
|
| 182 |
|
| 183 |

|
| 184 |
|
|
|
|
|
|
|
| 185 |

|
| 186 |
|
| 187 |
### Results
|
| 188 |
|
| 189 |
-
| Context | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 190 |
-
|
| 191 |
-
| **1** | 0.
|
| 192 |
-
| **1** | 1.
|
| 193 |
-
| **2** | 0.
|
| 194 |
-
| **2** | 1.
|
| 195 |
-
| **3** | 0.
|
| 196 |
-
| **3** | 0.
|
| 197 |
-
| **4** | 0.
|
| 198 |
-
| **4** | 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
|
| 200 |
-
### Generated Text Samples
|
| 201 |
|
| 202 |
-
|
|
|
|
|
|
|
| 203 |
|
| 204 |
**Context Size 1:**
|
| 205 |
|
| 206 |
-
1.
|
| 207 |
-
2. `
|
| 208 |
-
3. `
|
| 209 |
|
| 210 |
**Context Size 2:**
|
| 211 |
|
| 212 |
-
1. `
|
| 213 |
-
2.
|
| 214 |
-
3. `'
|
| 215 |
|
| 216 |
**Context Size 3:**
|
| 217 |
|
| 218 |
-
1. `
|
| 219 |
-
2. `
|
| 220 |
-
3. `
|
| 221 |
|
| 222 |
**Context Size 4:**
|
| 223 |
|
| 224 |
-
1. `
|
| 225 |
-
2.
|
| 226 |
-
3. `
|
| 227 |
|
| 228 |
|
| 229 |
### Key Findings
|
| 230 |
|
| 231 |
-
- **Best Predictability:** Context-4 with
|
| 232 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 233 |
-
- **Memory Trade-off:** Larger contexts require more storage (
|
| 234 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 235 |
|
| 236 |
---
|
|
@@ -246,36 +342,36 @@ Below are text samples generated from each Markov chain model:
|
|
| 246 |
|
| 247 |
| Metric | Value |
|
| 248 |
|--------|-------|
|
| 249 |
-
| Vocabulary Size |
|
| 250 |
-
| Total Tokens |
|
| 251 |
-
| Mean Frequency |
|
| 252 |
| Median Frequency | 3 |
|
| 253 |
-
| Frequency Std Dev |
|
| 254 |
|
| 255 |
### Most Common Words
|
| 256 |
|
| 257 |
| Rank | Word | Frequency |
|
| 258 |
|------|------|-----------|
|
| 259 |
-
| 1 |
|
| 260 |
-
| 2 |
|
| 261 |
-
| 3 |
|
| 262 |
-
| 4 |
|
| 263 |
-
| 5 |
|
| 264 |
-
| 6 |
|
| 265 |
-
| 7 |
|
| 266 |
-
| 8 |
|
| 267 |
-
| 9 |
|
| 268 |
-
| 10 |
|
| 269 |
|
| 270 |
### Least Common Words (from vocabulary)
|
| 271 |
|
| 272 |
| Rank | Word | Frequency |
|
| 273 |
|------|------|-----------|
|
| 274 |
-
| 1 |
|
| 275 |
-
| 2 |
|
| 276 |
-
| 3 |
|
| 277 |
-
| 4 |
|
| 278 |
-
| 5 |
|
| 279 |
| 6 | velò | 2 |
|
| 280 |
| 7 | arriv | 2 |
|
| 281 |
| 8 | sèda | 2 |
|
|
@@ -286,24 +382,24 @@ Below are text samples generated from each Markov chain model:
|
|
| 286 |
|
| 287 |
| Metric | Value |
|
| 288 |
|--------|-------|
|
| 289 |
-
| Zipf Coefficient | 1.
|
| 290 |
-
| R² (Goodness of Fit) | 0.
|
| 291 |
| Adherence Quality | **excellent** |
|
| 292 |
|
| 293 |
### Coverage Analysis
|
| 294 |
|
| 295 |
| Top N Words | Coverage |
|
| 296 |
|-------------|----------|
|
| 297 |
-
| Top 100 |
|
| 298 |
-
| Top 1,000 | 77.
|
| 299 |
-
| Top 5,000 |
|
| 300 |
-
| Top 10,000 |
|
| 301 |
|
| 302 |
### Key Findings
|
| 303 |
|
| 304 |
-
- **Zipf Compliance:** R²=0.
|
| 305 |
-
- **High Frequency Dominance:** Top 100 words cover
|
| 306 |
-
- **Long Tail:**
|
| 307 |
|
| 308 |
---
|
| 309 |
## 5. Word Embeddings Evaluation
|
|
@@ -316,24 +412,119 @@ Below are text samples generated from each Markov chain model:
|
|
| 316 |
|
| 317 |

|
| 318 |
|
| 319 |
-
### Model Comparison
|
| 320 |
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 327 |
|
| 328 |
### Key Findings
|
| 329 |
|
| 330 |
-
- **Best Isotropy:**
|
| 331 |
-
- **
|
| 332 |
-
- **
|
| 333 |
-
- **Recommendation:**
|
| 334 |
|
| 335 |
---
|
| 336 |
-
## 6.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 337 |
|
| 338 |

|
| 339 |
|
|
@@ -341,11 +532,12 @@ Below are text samples generated from each Markov chain model:
|
|
| 341 |
|
| 342 |
| Component | Recommended | Rationale |
|
| 343 |
|-----------|-------------|-----------|
|
| 344 |
-
| Tokenizer | **32k BPE** | Best compression (3.
|
| 345 |
-
| N-gram | **
|
| 346 |
-
| Markov | **Context-4** | Highest predictability (
|
| 347 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 348 |
|
|
|
|
| 349 |
---
|
| 350 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 351 |
|
|
@@ -535,7 +727,8 @@ If you use these models in your research, please cite:
|
|
| 535 |
author = {Kamali, Omar},
|
| 536 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 537 |
year = {2025},
|
| 538 |
-
|
|
|
|
| 539 |
url = {https://huggingface.co/wikilangs}
|
| 540 |
institution = {Omneity Labs}
|
| 541 |
}
|
|
@@ -551,7 +744,8 @@ MIT License - Free for academic and commercial use.
|
|
| 551 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 552 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 553 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
|
|
|
| 554 |
---
|
| 555 |
*Generated by Wikilangs Models Pipeline*
|
| 556 |
|
| 557 |
-
*Report Date:
|
|
|
|
| 1 |
---
|
| 2 |
language: eml
|
| 3 |
+
language_name: Unknown language [eml]
|
| 4 |
language_family: romance_galloitalic
|
| 5 |
tags:
|
| 6 |
- wikilangs
|
|
|
|
| 10 |
- n-gram
|
| 11 |
- markov
|
| 12 |
- wikipedia
|
| 13 |
+
- feature-extraction
|
| 14 |
+
- sentence-similarity
|
| 15 |
+
- tokenization
|
| 16 |
+
- n-grams
|
| 17 |
+
- markov-chain
|
| 18 |
+
- text-mining
|
| 19 |
+
- fasttext
|
| 20 |
+
- babelvec
|
| 21 |
+
- vocabulous
|
| 22 |
+
- vocabulary
|
| 23 |
- monolingual
|
| 24 |
- family-romance_galloitalic
|
| 25 |
license: mit
|
| 26 |
library_name: wikilangs
|
| 27 |
+
pipeline_tag: text-generation
|
| 28 |
datasets:
|
| 29 |
- omarkamali/wikipedia-monthly
|
| 30 |
dataset_info:
|
|
|
|
| 33 |
metrics:
|
| 34 |
- name: best_compression_ratio
|
| 35 |
type: compression
|
| 36 |
+
value: 3.369
|
| 37 |
- name: best_isotropy
|
| 38 |
type: isotropy
|
| 39 |
+
value: 0.3584
|
| 40 |
- name: vocabulary_size
|
| 41 |
type: vocab
|
| 42 |
+
value: 0
|
| 43 |
+
generated: 2026-01-04
|
| 44 |
---
|
| 45 |
|
| 46 |
+
# Unknown language [eml] - Wikilangs Models
|
| 47 |
## Comprehensive Research Report & Full Ablation Study
|
| 48 |
|
| 49 |
+
This repository contains NLP models trained and evaluated by Wikilangs, specifically on **Unknown language [eml]** Wikipedia data.
|
| 50 |
We analyze tokenizers, n-gram models, Markov chains, vocabulary statistics, and word embeddings.
|
| 51 |
|
| 52 |
## 📋 Repository Contents
|
|
|
|
| 54 |
### Models & Assets
|
| 55 |
|
| 56 |
- Tokenizers (8k, 16k, 32k, 64k)
|
| 57 |
+
- N-gram models (2, 3, 4, 5-gram)
|
| 58 |
+
- Markov chains (context of 1, 2, 3, 4 and 5)
|
| 59 |
- Subword N-gram and Markov chains
|
| 60 |
+
- Embeddings in various sizes and dimensions (aligned and unaligned)
|
| 61 |
- Language Vocabulary
|
| 62 |
- Language Statistics
|
| 63 |
+
|
| 64 |

|
| 65 |
|
| 66 |
### Analysis and Evaluation
|
|
|
|
| 70 |
- [3. Markov Chain Evaluation](#3-markov-chain-evaluation)
|
| 71 |
- [4. Vocabulary Analysis](#4-vocabulary-analysis)
|
| 72 |
- [5. Word Embeddings Evaluation](#5-word-embeddings-evaluation)
|
| 73 |
+
- [6. Morphological Analysis (Experimental)](#6--morphological-analysis-experimental)
|
| 74 |
+
- [7. Summary & Recommendations](#7-summary--recommendations)
|
| 75 |
- [Metrics Glossary](#appendix-metrics-glossary--interpretation-guide)
|
| 76 |
- [Visualizations Index](#visualizations-index)
|
| 77 |
|
|
|
|
| 80 |
|
| 81 |

|
| 82 |
|
| 83 |
+

|
| 84 |
+
|
| 85 |
+

|
| 86 |
+
|
| 87 |
+

|
| 88 |
+
|
| 89 |
### Results
|
| 90 |
|
| 91 |
| Vocab Size | Compression | Avg Token Len | UNK Rate | Total Tokens |
|
| 92 |
|------------|-------------|---------------|----------|--------------|
|
| 93 |
+
| **8k** | 2.942x | 2.95 | 0.4433% | 289,426 |
|
| 94 |
+
| **16k** | 3.144x | 3.15 | 0.4738% | 270,763 |
|
| 95 |
+
| **32k** | 3.369x 🏆 | 3.37 | 0.5076% | 252,742 |
|
|
|
|
| 96 |
|
| 97 |
### Tokenization Examples
|
| 98 |
|
| 99 |
Below are sample sentences tokenized with each vocabulary size:
|
| 100 |
|
| 101 |
+
**Sample 1:** `'l è 'l nòm 'd un domìni genèric. Al funsiòuna da 'l zógn dal ed domìni tachê a ...`
|
|
|
|
|
|
|
| 102 |
|
| 103 |
| Vocab | Tokens | Count |
|
| 104 |
|-------|--------|-------|
|
| 105 |
+
| 8k | `▁' l ▁è ▁' l ▁nòm ▁' d ▁un ▁domìni ... (+17 more)` | 27 |
|
| 106 |
+
| 16k | `▁' l ▁è ▁' l ▁nòm ▁' d ▁un ▁domìni ... (+17 more)` | 27 |
|
| 107 |
+
| 32k | `▁' l ▁è ▁' l ▁nòm ▁' d ▁un ▁domìni ... (+17 more)` | 27 |
|
|
|
|
| 108 |
|
| 109 |
+
**Sample 2:** `'l è 'l nòm 'd un domìni genèric. Al funsiòuna da 'l setèmber dal ed domìni tach...`
|
| 110 |
|
| 111 |
| Vocab | Tokens | Count |
|
| 112 |
|-------|--------|-------|
|
| 113 |
+
| 8k | `▁' l ▁è ▁' l ▁nòm ▁' d ▁un ▁domìni ... (+17 more)` | 27 |
|
| 114 |
+
| 16k | `▁' l ▁è ▁' l ▁nòm ▁' d ▁un ▁domìni ... (+17 more)` | 27 |
|
| 115 |
+
| 32k | `▁' l ▁è ▁' l ▁nòm ▁' d ▁un ▁domìni ... (+17 more)` | 27 |
|
|
|
|
| 116 |
|
| 117 |
+
**Sample 3:** `Al 294 'l è 'n an edl III sécol dal Calendàri gregoriàn. Avenimèint Nê Mort III`
|
|
|
|
| 118 |
|
| 119 |
| Vocab | Tokens | Count |
|
| 120 |
|-------|--------|-------|
|
| 121 |
+
| 8k | `▁al ▁ 2 9 4 ▁' l ▁è ▁' n ... (+12 more)` | 22 |
|
| 122 |
+
| 16k | `▁al ▁ 2 9 4 ▁' l ▁è ▁' n ... (+12 more)` | 22 |
|
| 123 |
+
| 32k | `▁al ▁ 2 9 4 ▁' l ▁è ▁' n ... (+12 more)` | 22 |
|
|
|
|
| 124 |
|
| 125 |
|
| 126 |
### Key Findings
|
| 127 |
|
| 128 |
+
- **Best Compression:** 32k achieves 3.369x compression
|
| 129 |
+
- **Lowest UNK Rate:** 8k with 0.4433% unknown tokens
|
| 130 |
- **Trade-off:** Larger vocabularies improve compression but increase model size
|
| 131 |
- **Recommendation:** 32k vocabulary provides optimal balance for production use
|
| 132 |
|
|
|
|
| 135 |
|
| 136 |

|
| 137 |
|
| 138 |
+

|
| 139 |
+
|
| 140 |

|
| 141 |
|
| 142 |
### Results
|
| 143 |
|
| 144 |
+
| N-gram | Variant | Perplexity | Entropy | Unique N-grams | Top-100 Coverage | Top-1000 Coverage |
|
| 145 |
+
|--------|---------|------------|---------|----------------|------------------|-------------------|
|
| 146 |
+
| **2-gram** | Word | 855 | 9.74 | 4,527 | 49.2% | 80.8% |
|
| 147 |
+
| **2-gram** | Subword | 342 🏆 | 8.42 | 2,464 | 62.9% | 97.8% |
|
| 148 |
+
| **3-gram** | Word | 936 | 9.87 | 6,071 | 49.5% | 79.8% |
|
| 149 |
+
| **3-gram** | Subword | 2,480 | 11.28 | 17,300 | 27.4% | 69.1% |
|
| 150 |
+
| **4-gram** | Word | 1,262 | 10.30 | 9,814 | 45.9% | 76.0% |
|
| 151 |
+
| **4-gram** | Subword | 9,840 | 13.26 | 65,901 | 17.3% | 46.3% |
|
| 152 |
+
| **5-gram** | Word | 1,050 | 10.04 | 7,194 | 45.5% | 79.7% |
|
| 153 |
+
| **5-gram** | Subword | 19,916 | 14.28 | 117,450 | 14.0% | 39.1% |
|
| 154 |
|
| 155 |
### Top 5 N-grams by Size
|
| 156 |
|
| 157 |
+
**2-grams (Word):**
|
| 158 |
+
|
| 159 |
+
| Rank | N-gram | Count |
|
| 160 |
+
|------|--------|-------|
|
| 161 |
+
| 1 | `l è` | 4,349 |
|
| 162 |
+
| 2 | `da l` | 2,854 |
|
| 163 |
+
| 3 | `d un` | 2,584 |
|
| 164 |
+
| 4 | `dal calendàri` | 1,948 |
|
| 165 |
+
| 5 | `è n` | 1,667 |
|
| 166 |
+
|
| 167 |
+
**3-grams (Word):**
|
| 168 |
+
|
| 169 |
+
| Rank | N-gram | Count |
|
| 170 |
+
|------|--------|-------|
|
| 171 |
+
| 1 | `l è n` | 1,665 |
|
| 172 |
+
| 2 | `dal calendàri gregoriàn` | 1,584 |
|
| 173 |
+
| 3 | `sécol dal calendàri` | 1,575 |
|
| 174 |
+
| 4 | `è n an` | 1,575 |
|
| 175 |
+
| 5 | `avenimèint nê mort` | 1,412 |
|
| 176 |
+
|
| 177 |
+
**4-grams (Word):**
|
| 178 |
+
|
| 179 |
+
| Rank | N-gram | Count |
|
| 180 |
+
|------|--------|-------|
|
| 181 |
+
| 1 | `l è n an` | 1,575 |
|
| 182 |
+
| 2 | `ed domìni tachê a` | 1,255 |
|
| 183 |
+
| 3 | `a funsionèr da l` | 1,255 |
|
| 184 |
+
| 4 | `domìni tachê a funsionèr` | 1,255 |
|
| 185 |
+
| 5 | `tachê a funsionèr da` | 1,255 |
|
| 186 |
+
|
| 187 |
+
**5-grams (Word):**
|
| 188 |
+
|
| 189 |
+
| Rank | N-gram | Count |
|
| 190 |
+
|------|--------|-------|
|
| 191 |
+
| 1 | `domìni tachê a funsionèr da` | 1,255 |
|
| 192 |
+
| 2 | `ed domìni tachê a funsionèr` | 1,255 |
|
| 193 |
+
| 3 | `tachê a funsionèr da l` | 1,255 |
|
| 194 |
+
| 4 | `l è l nòm d` | 1,247 |
|
| 195 |
+
| 5 | `l nòm d un domìni` | 1,247 |
|
| 196 |
+
|
| 197 |
+
**2-grams (Subword):**
|
| 198 |
+
|
| 199 |
+
| Rank | N-gram | Count |
|
| 200 |
+
|------|--------|-------|
|
| 201 |
+
| 1 | `a _` | 44,681 |
|
| 202 |
+
| 2 | `l _` | 36,354 |
|
| 203 |
+
| 3 | `_ d` | 31,152 |
|
| 204 |
+
| 4 | `_ a` | 28,707 |
|
| 205 |
+
| 5 | `n _` | 26,332 |
|
| 206 |
+
|
| 207 |
+
**3-grams (Subword):**
|
| 208 |
|
| 209 |
| Rank | N-gram | Count |
|
| 210 |
|------|--------|-------|
|
| 211 |
+
| 1 | `a l _` | 19,233 |
|
| 212 |
+
| 2 | `_ d a` | 13,700 |
|
| 213 |
+
| 3 | `_ i n` | 10,014 |
|
| 214 |
+
| 4 | `l a _` | 9,054 |
|
| 215 |
+
| 5 | `d a l` | 8,840 |
|
| 216 |
|
| 217 |
+
**4-grams (Subword):**
|
| 218 |
|
| 219 |
| Rank | N-gram | Count |
|
| 220 |
|------|--------|-------|
|
| 221 |
+
| 1 | `_ d a l` | 8,766 |
|
| 222 |
+
| 2 | `d a l _` | 8,710 |
|
| 223 |
+
| 3 | `_ a l _` | 7,884 |
|
| 224 |
+
| 4 | `_ e d _` | 6,634 |
|
| 225 |
+
| 5 | `_ l a _` | 5,983 |
|
| 226 |
|
| 227 |
+
**5-grams (Subword):**
|
| 228 |
|
| 229 |
| Rank | N-gram | Count |
|
| 230 |
|------|--------|-------|
|
| 231 |
+
| 1 | `_ d a l _` | 8,679 |
|
| 232 |
+
| 2 | `_ d a _ '` | 2,988 |
|
| 233 |
+
| 3 | `' l _ è _` | 2,975 |
|
| 234 |
+
| 4 | `l _ è _ '` | 2,854 |
|
| 235 |
+
| 5 | `d a _ ' l` | 2,762 |
|
| 236 |
|
| 237 |
|
| 238 |
### Key Findings
|
| 239 |
|
| 240 |
+
- **Best Perplexity:** 2-gram (subword) with 342
|
| 241 |
- **Entropy Trend:** Decreases with larger n-grams (more predictable)
|
| 242 |
+
- **Coverage:** Top-1000 patterns cover ~39% of corpus
|
| 243 |
- **Recommendation:** 4-gram or 5-gram for best predictive performance
|
| 244 |
|
| 245 |
---
|
|
|
|
| 247 |
|
| 248 |

|
| 249 |
|
| 250 |
+

|
| 251 |
+
|
| 252 |

|
| 253 |
|
| 254 |
### Results
|
| 255 |
|
| 256 |
+
| Context | Variant | Avg Entropy | Perplexity | Branching Factor | Unique Contexts | Predictability |
|
| 257 |
+
|---------|---------|-------------|------------|------------------|-----------------|----------------|
|
| 258 |
+
| **1** | Word | 0.6144 | 1.531 | 3.27 | 38,079 | 38.6% |
|
| 259 |
+
| **1** | Subword | 1.2142 | 2.320 | 11.72 | 398 | 0.0% |
|
| 260 |
+
| **2** | Word | 0.1859 | 1.138 | 1.39 | 123,729 | 81.4% |
|
| 261 |
+
| **2** | Subword | 1.1401 | 2.204 | 6.72 | 4,661 | 0.0% |
|
| 262 |
+
| **3** | Word | 0.0688 | 1.049 | 1.12 | 170,769 | 93.1% |
|
| 263 |
+
| **3** | Subword | 0.8376 | 1.787 | 3.69 | 31,279 | 16.2% |
|
| 264 |
+
| **4** | Word | 0.0286 🏆 | 1.020 | 1.05 | 189,112 | 97.1% |
|
| 265 |
+
| **4** | Subword | 0.5759 | 1.491 | 2.30 | 115,443 | 42.4% |
|
| 266 |
+
|
| 267 |
+
### Generated Text Samples (Word-based)
|
| 268 |
+
|
| 269 |
+
Below are text samples generated from each word-based Markov chain model:
|
| 270 |
+
|
| 271 |
+
**Context Size 1:**
|
| 272 |
+
|
| 273 |
+
1. `l é al progrâma pc 12 518 519 520 gonèl 22 ed domìni genèric al urèl`
|
| 274 |
+
2. `al funsiòuna da per 4 quèśi prim sfènic difetìv 322 in sensu laudator temporis acti prudentes`
|
| 275 |
+
3. `dal crìst 4 d oro una cumêdia d antonino inferito da l è l è l`
|
| 276 |
+
|
| 277 |
+
**Context Size 2:**
|
| 278 |
+
|
| 279 |
+
1. `l è n an dal vii sécol dal calendàri gregoriàn avenimèint nê guélf vi mort xii`
|
| 280 |
+
2. `d un nùmer triangolèr moltìplica per 5 d un nùmer quèder moltìplica per 3 d un domìni`
|
| 281 |
+
3. `dal calendàri gregoriàn avenimèint nê mort x`
|
| 282 |
+
|
| 283 |
+
**Context Size 3:**
|
| 284 |
+
|
| 285 |
+
1. `l è n an edl iii sécol dal calendàri gregoriàn avenimèint nê mort i`
|
| 286 |
+
2. `dal calendàri gregoriàn avenimèint nê mort viii`
|
| 287 |
+
3. `è n an edl viii sécol dal calendàri gregoriàn avenimèint nê mort xvi`
|
| 288 |
+
|
| 289 |
+
**Context Size 4:**
|
| 290 |
+
|
| 291 |
+
1. `l è n an edl ix sécol dal calendàri gregoriàn avenimèint nê mort v`
|
| 292 |
+
2. `domìni tachê a funsionèr da l`
|
| 293 |
+
3. `ed domìni tachê a funsionèr da l`
|
| 294 |
|
|
|
|
| 295 |
|
| 296 |
+
### Generated Text Samples (Subword-based)
|
| 297 |
+
|
| 298 |
+
Below are text samples generated from each subword-based Markov chain model:
|
| 299 |
|
| 300 |
**Context Size 1:**
|
| 301 |
|
| 302 |
+
1. `_pe_gotili_l'n_i`
|
| 303 |
+
2. `andogrin_menèiṣa`
|
| 304 |
+
3. `i_incōridl_stêst`
|
| 305 |
|
| 306 |
**Context Size 2:**
|
| 307 |
|
| 308 |
+
1. `a_cuns_e_tòra_fiō`
|
| 309 |
+
2. `l_séco,_ed_unèli_`
|
| 310 |
+
3. `_drê_avōl_è_'l_59`
|
| 311 |
|
| 312 |
**Context Size 3:**
|
| 313 |
|
| 314 |
+
1. `al_sît_la_cà_paolo`
|
| 315 |
+
2. `_da_63_in_difestìl`
|
| 316 |
+
3. `_in-dóvv_a_un_di_c`
|
| 317 |
|
| 318 |
**Context Size 4:**
|
| 319 |
|
| 320 |
+
1. `_dal_calendàri_greg`
|
| 321 |
+
2. `dal_viii_sèc._préma`
|
| 322 |
+
3. `_al_funsiòuna_da_'l`
|
| 323 |
|
| 324 |
|
| 325 |
### Key Findings
|
| 326 |
|
| 327 |
+
- **Best Predictability:** Context-4 (word) with 97.1% predictability
|
| 328 |
- **Branching Factor:** Decreases with context size (more deterministic)
|
| 329 |
+
- **Memory Trade-off:** Larger contexts require more storage (115,443 contexts)
|
| 330 |
- **Recommendation:** Context-3 or Context-4 for text generation
|
| 331 |
|
| 332 |
---
|
|
|
|
| 342 |
|
| 343 |
| Metric | Value |
|
| 344 |
|--------|-------|
|
| 345 |
+
| Vocabulary Size | 14,744 |
|
| 346 |
+
| Total Tokens | 272,012 |
|
| 347 |
+
| Mean Frequency | 18.45 |
|
| 348 |
| Median Frequency | 3 |
|
| 349 |
+
| Frequency Std Dev | 223.57 |
|
| 350 |
|
| 351 |
### Most Common Words
|
| 352 |
|
| 353 |
| Rank | Word | Frequency |
|
| 354 |
|------|------|-----------|
|
| 355 |
+
| 1 | l | 12,992 |
|
| 356 |
+
| 2 | al | 10,267 |
|
| 357 |
+
| 3 | dal | 8,736 |
|
| 358 |
+
| 4 | a | 7,317 |
|
| 359 |
+
| 5 | ed | 6,740 |
|
| 360 |
+
| 6 | la | 6,622 |
|
| 361 |
+
| 7 | d | 5,491 |
|
| 362 |
+
| 8 | in | 5,032 |
|
| 363 |
+
| 9 | è | 4,792 |
|
| 364 |
+
| 10 | da | 4,480 |
|
| 365 |
|
| 366 |
### Least Common Words (from vocabulary)
|
| 367 |
|
| 368 |
| Rank | Word | Frequency |
|
| 369 |
|------|------|-----------|
|
| 370 |
+
| 1 | espositìv | 2 |
|
| 371 |
+
| 2 | ecosistèma | 2 |
|
| 372 |
+
| 3 | trasformasiòun | 2 |
|
| 373 |
+
| 4 | galleria | 2 |
|
| 374 |
+
| 5 | space | 2 |
|
| 375 |
| 6 | velò | 2 |
|
| 376 |
| 7 | arriv | 2 |
|
| 377 |
| 8 | sèda | 2 |
|
|
|
|
| 382 |
|
| 383 |
| Metric | Value |
|
| 384 |
|--------|-------|
|
| 385 |
+
| Zipf Coefficient | 1.0159 |
|
| 386 |
+
| R² (Goodness of Fit) | 0.990784 |
|
| 387 |
| Adherence Quality | **excellent** |
|
| 388 |
|
| 389 |
### Coverage Analysis
|
| 390 |
|
| 391 |
| Top N Words | Coverage |
|
| 392 |
|-------------|----------|
|
| 393 |
+
| Top 100 | 57.7% |
|
| 394 |
+
| Top 1,000 | 77.8% |
|
| 395 |
+
| Top 5,000 | 90.7% |
|
| 396 |
+
| Top 10,000 | 96.5% |
|
| 397 |
|
| 398 |
### Key Findings
|
| 399 |
|
| 400 |
+
- **Zipf Compliance:** R²=0.9908 indicates excellent adherence to Zipf's law
|
| 401 |
+
- **High Frequency Dominance:** Top 100 words cover 57.7% of corpus
|
| 402 |
+
- **Long Tail:** 4,744 words needed for remaining 3.5% coverage
|
| 403 |
|
| 404 |
---
|
| 405 |
## 5. Word Embeddings Evaluation
|
|
|
|
| 412 |
|
| 413 |

|
| 414 |
|
|
|
|
| 415 |
|
| 416 |
+
### 5.1 Cross-Lingual Alignment
|
| 417 |
+
|
| 418 |
+

|
| 419 |
+
|
| 420 |
+

|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
### 5.2 Model Comparison
|
| 424 |
+
|
| 425 |
+
| Model | Dimension | Isotropy | Semantic Density | Alignment R@1 | Alignment R@10 |
|
| 426 |
+
|-------|-----------|----------|------------------|---------------|----------------|
|
| 427 |
+
| **mono_32d** | 32 | 0.3584 | 0.4391 | N/A | N/A |
|
| 428 |
+
| **mono_64d** | 64 | 0.1134 | 0.4504 | N/A | N/A |
|
| 429 |
+
| **mono_128d** | 128 | 0.0166 | 0.4596 | N/A | N/A |
|
| 430 |
+
| **aligned_32d** | 32 | 0.3584 🏆 | 0.4411 | 0.0140 | 0.1660 |
|
| 431 |
+
| **aligned_64d** | 64 | 0.1134 | 0.4292 | 0.0460 | 0.2440 |
|
| 432 |
+
| **aligned_128d** | 128 | 0.0166 | 0.4457 | 0.0400 | 0.2640 |
|
| 433 |
|
| 434 |
### Key Findings
|
| 435 |
|
| 436 |
+
- **Best Isotropy:** aligned_32d with 0.3584 (more uniform distribution)
|
| 437 |
+
- **Semantic Density:** Average pairwise similarity of 0.4442. Lower values indicate better semantic separation.
|
| 438 |
+
- **Alignment Quality:** Aligned models achieve up to 4.6% R@1 in cross-lingual retrieval.
|
| 439 |
+
- **Recommendation:** 128d aligned for best cross-lingual performance
|
| 440 |
|
| 441 |
---
|
| 442 |
+
## 6. Morphological Analysis (Experimental)
|
| 443 |
+
|
| 444 |
+
This section presents an automated morphological analysis derived from the statistical divergence between word-level and subword-level models. By analyzing where subword predictability spikes and where word-level coverage fails, we can infer linguistic structures without supervised data.
|
| 445 |
+
|
| 446 |
+
### 6.1 Productivity & Complexity
|
| 447 |
+
|
| 448 |
+
| Metric | Value | Interpretation | Recommendation |
|
| 449 |
+
|--------|-------|----------------|----------------|
|
| 450 |
+
| Productivity Index | **5.000** | High morphological productivity | Reliable analysis |
|
| 451 |
+
| Idiomaticity Gap | **1.037** | High formulaic/idiomatic content | - |
|
| 452 |
+
|
| 453 |
+
### 6.2 Affix Inventory (Productive Units)
|
| 454 |
+
|
| 455 |
+
These are the most productive prefixes and suffixes identified by sampling the vocabulary for global substitutability patterns. A unit is considered an affix if stripping it leaves a valid stem that appears in other contexts.
|
| 456 |
+
|
| 457 |
+
#### Productive Prefixes
|
| 458 |
+
| Prefix | Examples |
|
| 459 |
+
|--------|----------|
|
| 460 |
+
| `-ca` | cal, cavésin, caviân |
|
| 461 |
+
|
| 462 |
+
#### Productive Suffixes
|
| 463 |
+
| Suffix | Examples |
|
| 464 |
+
|--------|----------|
|
| 465 |
+
| `-a` | scōla, algebra, câṣva |
|
| 466 |
+
| `-um` | coelum, adsum, 217śum |
|
| 467 |
+
| `-na` | vègna, teresina, ruvîna |
|
| 468 |
+
|
| 469 |
+
### 6.3 Bound Stems (Lexical Roots)
|
| 470 |
+
|
| 471 |
+
Bound stems are high-frequency subword units that are semantically cohesive but rarely appear as standalone words. These often correspond to the 'core' of a word that requires inflection or derivation to be valid.
|
| 472 |
+
|
| 473 |
+
| Stem | Cohesion | Substitutability | Examples |
|
| 474 |
+
|------|----------|------------------|----------|
|
| 475 |
+
| `asiò` | 1.80x | 17 contexts | asiòṅ, asiòun, frasiòn |
|
| 476 |
+
| `siòu` | 1.79x | 17 contexts | asiòun, sesiòun, lesiòun |
|
| 477 |
+
| `purt` | 1.55x | 23 contexts | purtâ, purtê, purtä |
|
| 478 |
+
| `iòun` | 1.73x | 16 contexts | uniòun, asiòun, sesiòun |
|
| 479 |
+
| `nter` | 1.50x | 24 contexts | inter, nterra, dänter |
|
| 480 |
+
| `sèin` | 1.51x | 17 contexts | sèins, sèint, casèin |
|
| 481 |
+
| `tèin` | 1.48x | 16 contexts | latèin, estèin, putèin |
|
| 482 |
+
| `ital` | 1.53x | 14 contexts | italy, italo, vitali |
|
| 483 |
+
| `tôri` | 1.78x | 9 contexts | stôri, stôric, stôria |
|
| 484 |
+
| `rèin` | 1.46x | 14 contexts | rèina, trèin, terèin |
|
| 485 |
+
| `inte` | 1.59x | 11 contexts | inter, intern, interès |
|
| 486 |
+
| `mèin` | 1.79x | 8 contexts | mèint, camèin, mumèint |
|
| 487 |
+
|
| 488 |
+
### 6.4 Affix Compatibility (Co-occurrence)
|
| 489 |
+
|
| 490 |
+
This table shows which prefixes and suffixes most frequently co-occur on the same stems, revealing the 'stacking' rules of the language's morphology.
|
| 491 |
+
|
| 492 |
+
| Prefix | Suffix | Frequency | Examples |
|
| 493 |
+
|--------|--------|-----------|----------|
|
| 494 |
+
| `-ca` | `-a` | 53 words | cavacürta, canpâgna |
|
| 495 |
+
| `-ca` | `-na` | 16 words | canpâgna, catalógna |
|
| 496 |
+
|
| 497 |
+
### 6.5 Recursive Morpheme Segmentation
|
| 498 |
+
|
| 499 |
+
Using **Recursive Hierarchical Substitutability**, we decompose complex words into their constituent morphemes. This approach handles nested affixes (e.g., `prefix-prefix-root-suffix`).
|
| 500 |
+
|
| 501 |
+
| Word | Suggested Split | Confidence | Stem |
|
| 502 |
+
|------|-----------------|------------|------|
|
| 503 |
+
| cascaggna | **`ca-scagg-na`** | 3.0 | `scagg` |
|
| 504 |
+
| califòrgna | **`ca-lifòrg-na`** | 3.0 | `lifòrg` |
|
| 505 |
+
| campàggna | **`ca-mpàgg-na`** | 3.0 | `mpàgg` |
|
| 506 |
+
| castlaran | **`ca-stlaran`** | 1.5 | `stlaran` |
|
| 507 |
+
| philosophum | **`philosoph-um`** | 1.5 | `philosoph` |
|
| 508 |
+
| privilegium | **`privilegi-um`** | 1.5 | `privilegi` |
|
| 509 |
+
| calandäri | **`ca-landäri`** | 1.5 | `landäri` |
|
| 510 |
+
| referendum | **`referend-um`** | 1.5 | `referend` |
|
| 511 |
+
| metropolitana | **`metropolita-na`** | 1.5 | `metropolita` |
|
| 512 |
+
| carabinieri | **`ca-rabinieri`** | 1.5 | `rabinieri` |
|
| 513 |
+
| parmigiana | **`parmigia-na`** | 1.5 | `parmigia` |
|
| 514 |
+
| funsiòuna | **`funsiòu-na`** | 1.5 | `funsiòu` |
|
| 515 |
+
| carpigiano | **`ca-rpigiano`** | 1.5 | `rpigiano` |
|
| 516 |
+
| caraterésstic | **`ca-raterésstic`** | 1.5 | `raterésstic` |
|
| 517 |
+
| indipendentîxum | **`indipendentîx-um`** | 1.5 | `indipendentîx` |
|
| 518 |
+
|
| 519 |
+
### 6.6 Linguistic Interpretation
|
| 520 |
+
|
| 521 |
+
> **Automated Insight:**
|
| 522 |
+
The language Unknown language [eml] shows high morphological productivity. The subword models are significantly more efficient than word models, suggesting a rich system of affixation or compounding.
|
| 523 |
+
|
| 524 |
+
> **Note on Idiomaticity:** The high Idiomaticity Gap suggests a large number of frequent multi-word expressions or formulaic sequences that are statistically distinct from their component parts.
|
| 525 |
+
|
| 526 |
+
---
|
| 527 |
+
## 7. Summary & Recommendations
|
| 528 |
|
| 529 |

|
| 530 |
|
|
|
|
| 532 |
|
| 533 |
| Component | Recommended | Rationale |
|
| 534 |
|-----------|-------------|-----------|
|
| 535 |
+
| Tokenizer | **32k BPE** | Best compression (3.37x) |
|
| 536 |
+
| N-gram | **2-gram** | Lowest perplexity (342) |
|
| 537 |
+
| Markov | **Context-4** | Highest predictability (97.1%) |
|
| 538 |
| Embeddings | **100d** | Balanced semantic capture and isotropy |
|
| 539 |
|
| 540 |
+
|
| 541 |
---
|
| 542 |
## Appendix: Metrics Glossary & Interpretation Guide
|
| 543 |
|
|
|
|
| 727 |
author = {Kamali, Omar},
|
| 728 |
title = {Wikilangs: Open NLP Models for Wikipedia Languages},
|
| 729 |
year = {2025},
|
| 730 |
+
doi = {10.5281/zenodo.18073153},
|
| 731 |
+
publisher = {Zenodo},
|
| 732 |
url = {https://huggingface.co/wikilangs}
|
| 733 |
institution = {Omneity Labs}
|
| 734 |
}
|
|
|
|
| 744 |
- 🤗 Models: [huggingface.co/wikilangs](https://huggingface.co/wikilangs)
|
| 745 |
- 📊 Data: [wikipedia-monthly](https://huggingface.co/datasets/omarkamali/wikipedia-monthly)
|
| 746 |
- 👤 Author: [Omar Kamali](https://huggingface.co/omarkamali)
|
| 747 |
+
- 🤝 Sponsor: [Featherless AI](https://featherless.ai)
|
| 748 |
---
|
| 749 |
*Generated by Wikilangs Models Pipeline*
|
| 750 |
|
| 751 |
+
*Report Date: 2026-01-04 14:33:51*
|
models/embeddings/aligned/eml_128d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fcb8fc5fbcdb5bbb3c3855e6260d0c0ed9be1bd2540732441851e144e55b1bb5
|
| 3 |
+
size 1028819578
|
models/embeddings/aligned/eml_128d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "eml", "dim": 128, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/eml_128d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:92a565cca0b1fec7fcc3929c57b7a0f14938727f603974d98feafa917c5b6a07
|
| 3 |
+
size 65664
|
models/embeddings/aligned/eml_128d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "eml",
|
| 3 |
+
"dimension": 128,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 1782,
|
| 7 |
+
"vocab_size": 4635
|
| 8 |
+
}
|
models/embeddings/aligned/eml_32d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9048aabb8f2135dcb1eb5657f02c39c14081bad67cf1f08cc9d4be1e05987fdd
|
| 3 |
+
size 257259898
|
models/embeddings/aligned/eml_32d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "eml", "dim": 32, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/eml_32d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4b3e21ae26c45f38a7dd8a3536b26336fb4ff728db58b503dcf80f58a62ce218
|
| 3 |
+
size 4224
|
models/embeddings/aligned/eml_32d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "eml",
|
| 3 |
+
"dimension": 32,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 1782,
|
| 7 |
+
"vocab_size": 4635
|
| 8 |
+
}
|
models/embeddings/aligned/eml_64d.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:54e13e135d67a9e81ac2a112d124d647a6d159a876cf31a47f640828b12b32af
|
| 3 |
+
size 514446458
|
models/embeddings/aligned/eml_64d.meta.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"lang": "eml", "dim": 64, "max_seq_len": 512, "is_aligned": true}
|
models/embeddings/aligned/eml_64d.projection.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c8496df49686df9ad094fba37cb9c2c359c62122fe0b0c3a35107a9b92700715
|
| 3 |
+
size 16512
|
models/embeddings/aligned/eml_64d_metadata.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"language": "eml",
|
| 3 |
+
"dimension": 64,
|
| 4 |
+
"version": "aligned",
|
| 5 |
+
"hub_language": "en",
|
| 6 |
+
"seed_vocab_size": 1782,
|
| 7 |
+
"vocab_size": 4635
|
| 8 |
+
}
|
models/embeddings/monolingual/eml_128d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fcb8fc5fbcdb5bbb3c3855e6260d0c0ed9be1bd2540732441851e144e55b1bb5
|
| 3 |
+
size 1028819578
|
models/embeddings/monolingual/eml_128d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 128,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 128
|
| 13 |
},
|
| 14 |
+
"vocab_size": 4635
|
| 15 |
}
|
models/embeddings/monolingual/eml_32d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9048aabb8f2135dcb1eb5657f02c39c14081bad67cf1f08cc9d4be1e05987fdd
|
| 3 |
+
size 257259898
|
models/embeddings/monolingual/eml_32d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 32,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 32
|
| 13 |
},
|
| 14 |
+
"vocab_size": 4635
|
| 15 |
}
|
models/embeddings/monolingual/eml_64d.bin
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:54e13e135d67a9e81ac2a112d124d647a6d159a876cf31a47f640828b12b32af
|
| 3 |
+
size 514446458
|
models/embeddings/monolingual/eml_64d_metadata.json
CHANGED
|
@@ -3,11 +3,13 @@
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
-
"
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
-
"epochs": 5
|
|
|
|
|
|
|
| 11 |
},
|
| 12 |
-
"vocab_size":
|
| 13 |
}
|
|
|
|
| 3 |
"dimension": 64,
|
| 4 |
"version": "monolingual",
|
| 5 |
"training_params": {
|
| 6 |
+
"algorithm": "skipgram",
|
| 7 |
"min_count": 5,
|
| 8 |
"window": 5,
|
| 9 |
"negative": 5,
|
| 10 |
+
"epochs": 5,
|
| 11 |
+
"encoding_method": "rope",
|
| 12 |
+
"dim": 64
|
| 13 |
},
|
| 14 |
+
"vocab_size": 4635
|
| 15 |
}
|
models/subword_markov/eml_markov_ctx1_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d6b926e1938473f2238d8b1a246fdca632c9df31a38f38cde47b1430b2326ca8
|
| 3 |
+
size 41044
|
models/subword_markov/eml_markov_ctx1_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "eml",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "eml",
|
| 5 |
+
"unique_contexts": 398,
|
| 6 |
+
"total_transitions": 1534890
|
| 7 |
}
|
models/subword_markov/eml_markov_ctx2_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b6b72d5397e477fda64eb68479d038a681650923e44ef8e56c40f841f61196ad
|
| 3 |
+
size 239585
|
models/subword_markov/eml_markov_ctx2_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "eml",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "eml",
|
| 5 |
+
"unique_contexts": 4661,
|
| 6 |
+
"total_transitions": 1529310
|
| 7 |
}
|
models/subword_markov/eml_markov_ctx3_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d32d5c8474464f3542b5c640f67f02b7cdd18b7294731baa5ac803d49bb0eda9
|
| 3 |
+
size 824128
|
models/subword_markov/eml_markov_ctx3_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "eml",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "eml",
|
| 5 |
+
"unique_contexts": 31279,
|
| 6 |
+
"total_transitions": 1523730
|
| 7 |
}
|
models/subword_markov/eml_markov_ctx4_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:86656b5d89b562fdcdf8d2b076d8bbbace53baaf9733ab41014512d25be68d3a
|
| 3 |
+
size 2063582
|
models/subword_markov/eml_markov_ctx4_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "eml",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "eml",
|
| 5 |
+
"unique_contexts": 115443,
|
| 6 |
+
"total_transitions": 1518150
|
| 7 |
}
|
models/subword_ngram/eml_2gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:abc65477b77ec14a68768bc6a4cbe985f8fb901ef27a3c085790b09ba780b5f7
|
| 3 |
+
size 32669
|
models/subword_ngram/eml_2gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "eml",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 2,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "eml",
|
| 5 |
+
"unique_ngrams": 2464,
|
| 6 |
+
"total_ngrams": 1534890
|
| 7 |
}
|
models/subword_ngram/eml_3gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:98c47ca7a64b381223f763a388157b191e0de53ced724ae4b32a96deaf39a731
|
| 3 |
+
size 205276
|
models/subword_ngram/eml_3gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "eml",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 3,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "eml",
|
| 5 |
+
"unique_ngrams": 17300,
|
| 6 |
+
"total_ngrams": 1529310
|
| 7 |
}
|
models/subword_ngram/eml_4gram_subword.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9c52554bef1faa4c04b02e07fd6ee1d6c2d1808c138f7468b367a43effed73bf
|
| 3 |
+
size 776580
|
models/subword_ngram/eml_4gram_subword_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "eml",
|
| 5 |
-
"unique_ngrams":
|
| 6 |
-
"total_ngrams":
|
| 7 |
}
|
|
|
|
| 2 |
"n": 4,
|
| 3 |
"variant": "subword",
|
| 4 |
"language": "eml",
|
| 5 |
+
"unique_ngrams": 65901,
|
| 6 |
+
"total_ngrams": 1523730
|
| 7 |
}
|
models/subword_ngram/eml_5gram_subword.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ceedf622b97b0e16718698141c4b219dee5ba830fac72b206d1dc6e3f594096b
|
| 3 |
+
size 1371520
|
models/subword_ngram/eml_5gram_subword_metadata.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"n": 5,
|
| 3 |
+
"variant": "subword",
|
| 4 |
+
"language": "eml",
|
| 5 |
+
"unique_ngrams": 117450,
|
| 6 |
+
"total_ngrams": 1518150
|
| 7 |
+
}
|
models/tokenizer/eml_tokenizer_16k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e4ca140168e773921387292dd413a84d6448393458bdcff201a3aa5256417afb
|
| 3 |
+
size 508897
|
models/tokenizer/eml_tokenizer_16k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/eml_tokenizer_32k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3f05d7f5bc311f044df8793f8da075d15b79dd7ccce85b63f5afe91f40ea36b3
|
| 3 |
+
size 797552
|
models/tokenizer/eml_tokenizer_32k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/tokenizer/eml_tokenizer_8k.model
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0a22d81760f62d518080719bef868af8f2d18593e0e1ddcab0664e141bc3c718
|
| 3 |
+
size 370847
|
models/tokenizer/eml_tokenizer_8k.vocab
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
models/vocabulary/eml_vocabulary.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:292e25805145d187f0bbc5f3f2fc487329b45ee890b9b03b744d59d04ce3e18d
|
| 3 |
+
size 233473
|
models/vocabulary/eml_vocabulary_metadata.json
CHANGED
|
@@ -1,16 +1,17 @@
|
|
| 1 |
{
|
| 2 |
"language": "eml",
|
| 3 |
-
"vocabulary_size":
|
|
|
|
| 4 |
"statistics": {
|
| 5 |
-
"type_token_ratio": 0.
|
| 6 |
"coverage": {
|
| 7 |
-
"top_100": 0.
|
| 8 |
-
"top_1000": 0.
|
| 9 |
-
"top_5000": 0.
|
| 10 |
-
"top_10000": 0.
|
| 11 |
},
|
| 12 |
-
"hapax_count":
|
| 13 |
-
"hapax_ratio": 0.
|
| 14 |
-
"total_documents":
|
| 15 |
}
|
| 16 |
}
|
|
|
|
| 1 |
{
|
| 2 |
"language": "eml",
|
| 3 |
+
"vocabulary_size": 14744,
|
| 4 |
+
"variant": "full",
|
| 5 |
"statistics": {
|
| 6 |
+
"type_token_ratio": 0.12930704797360182,
|
| 7 |
"coverage": {
|
| 8 |
+
"top_100": 0.5308097131737034,
|
| 9 |
+
"top_1000": 0.7164396311024621,
|
| 10 |
+
"top_5000": 0.8352855571537355,
|
| 11 |
+
"top_10000": 0.8884812589897623
|
| 12 |
},
|
| 13 |
+
"hapax_count": 23463,
|
| 14 |
+
"hapax_ratio": 0.6141021278823252,
|
| 15 |
+
"total_documents": 5580
|
| 16 |
}
|
| 17 |
}
|
models/word_markov/eml_markov_ctx1_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b58650add7a0b58bfff9460f57cc83996fd12568ed8a603676040d4122f7d3f7
|
| 3 |
+
size 1170078
|
models/word_markov/eml_markov_ctx1_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "eml",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 1,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "eml",
|
| 5 |
+
"unique_contexts": 38079,
|
| 6 |
+
"total_transitions": 289895
|
| 7 |
}
|
models/word_markov/eml_markov_ctx2_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:180ce7b12c5d6e9d779d053b5c92bd28686e4ae07387f9ce71787acbdc206aa8
|
| 3 |
+
size 2189970
|
models/word_markov/eml_markov_ctx2_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "eml",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 2,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "eml",
|
| 5 |
+
"unique_contexts": 123729,
|
| 6 |
+
"total_transitions": 284315
|
| 7 |
}
|
models/word_markov/eml_markov_ctx3_word.parquet
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8dcf8703e6eb0d8f9636fcdb573b7b4b59c35eca9c75294e4d6f51dbb89b5c46
|
| 3 |
+
size 2864580
|
models/word_markov/eml_markov_ctx3_word_metadata.json
CHANGED
|
@@ -2,6 +2,6 @@
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "eml",
|
| 5 |
-
"unique_contexts":
|
| 6 |
-
"total_transitions":
|
| 7 |
}
|
|
|
|
| 2 |
"context_size": 3,
|
| 3 |
"variant": "word",
|
| 4 |
"language": "eml",
|
| 5 |
+
"unique_contexts": 170769,
|
| 6 |
+
"total_transitions": 278735
|
| 7 |
}
|