text
stringlengths
81
112k
Compute the partition at each `level` from the dataframe. def levels_for(self, time_op, groups, df): """ Compute the partition at each `level` from the dataframe. """ levels = {} for i in range(0, len(groups) + 1): agg_df = df.groupby(groups[:i]) if i else df levels[i] = ( agg_df.mean() if time_op == 'agg_mean' else agg_df.sum(numeric_only=True)) return levels
Nest values at each level on the back-end with access and setting, instead of summing from the bottom. def nest_values(self, levels, level=0, metric=None, dims=()): """ Nest values at each level on the back-end with access and setting, instead of summing from the bottom. """ if not level: return [{ 'name': m, 'val': levels[0][m], 'children': self.nest_values(levels, 1, m), } for m in levels[0].index] if level == 1: return [{ 'name': i, 'val': levels[1][metric][i], 'children': self.nest_values(levels, 2, metric, (i,)), } for i in levels[1][metric].index] if level >= len(levels): return [] return [{ 'name': i, 'val': levels[level][metric][dims][i], 'children': self.nest_values( levels, level + 1, metric, dims + (i,), ), } for i in levels[level][metric][dims].index]
Data representation of the datasource sent to the frontend def short_data(self): """Data representation of the datasource sent to the frontend""" return { 'edit_url': self.url, 'id': self.id, 'uid': self.uid, 'schema': self.schema, 'name': self.name, 'type': self.type, 'connection': self.connection, 'creator': str(self.created_by), }
Data representation of the datasource sent to the frontend def data(self): """Data representation of the datasource sent to the frontend""" order_by_choices = [] # self.column_names return sorted column_names for s in self.column_names: s = str(s or '') order_by_choices.append((json.dumps([s, True]), s + ' [asc]')) order_by_choices.append((json.dumps([s, False]), s + ' [desc]')) verbose_map = {'__timestamp': 'Time'} verbose_map.update({ o.metric_name: o.verbose_name or o.metric_name for o in self.metrics }) verbose_map.update({ o.column_name: o.verbose_name or o.column_name for o in self.columns }) return { # simple fields 'id': self.id, 'column_formats': self.column_formats, 'description': self.description, 'database': self.database.data, # pylint: disable=no-member 'default_endpoint': self.default_endpoint, 'filter_select': self.filter_select_enabled, # TODO deprecate 'filter_select_enabled': self.filter_select_enabled, 'name': self.name, 'datasource_name': self.datasource_name, 'type': self.type, 'schema': self.schema, 'offset': self.offset, 'cache_timeout': self.cache_timeout, 'params': self.params, 'perm': self.perm, 'edit_url': self.url, # sqla-specific 'sql': self.sql, # one to many 'columns': [o.data for o in self.columns], 'metrics': [o.data for o in self.metrics], # TODO deprecate, move logic to JS 'order_by_choices': order_by_choices, 'owners': [owner.id for owner in self.owners], 'verbose_map': verbose_map, 'select_star': self.select_star, }
Update ORM one-to-many list from object list Used for syncing metrics and columns using the same code def get_fk_many_from_list( self, object_list, fkmany, fkmany_class, key_attr): """Update ORM one-to-many list from object list Used for syncing metrics and columns using the same code""" object_dict = {o.get(key_attr): o for o in object_list} object_keys = [o.get(key_attr) for o in object_list] # delete fks that have been removed fkmany = [o for o in fkmany if getattr(o, key_attr) in object_keys] # sync existing fks for fk in fkmany: obj = object_dict.get(getattr(fk, key_attr)) for attr in fkmany_class.update_from_object_fields: setattr(fk, attr, obj.get(attr)) # create new fks new_fks = [] orm_keys = [getattr(o, key_attr) for o in fkmany] for obj in object_list: key = obj.get(key_attr) if key not in orm_keys: del obj['id'] orm_kwargs = {} for k in obj: if ( k in fkmany_class.update_from_object_fields and k in obj ): orm_kwargs[k] = obj[k] new_obj = fkmany_class(**orm_kwargs) new_fks.append(new_obj) fkmany += new_fks return fkmany
Update datasource from a data structure The UI's table editor crafts a complex data structure that contains most of the datasource's properties as well as an array of metrics and columns objects. This method receives the object from the UI and syncs the datasource to match it. Since the fields are different for the different connectors, the implementation uses ``update_from_object_fields`` which can be defined for each connector and defines which fields should be synced def update_from_object(self, obj): """Update datasource from a data structure The UI's table editor crafts a complex data structure that contains most of the datasource's properties as well as an array of metrics and columns objects. This method receives the object from the UI and syncs the datasource to match it. Since the fields are different for the different connectors, the implementation uses ``update_from_object_fields`` which can be defined for each connector and defines which fields should be synced""" for attr in self.update_from_object_fields: setattr(self, attr, obj.get(attr)) self.owners = obj.get('owners', []) # Syncing metrics metrics = self.get_fk_many_from_list( obj.get('metrics'), self.metrics, self.metric_class, 'metric_name') self.metrics = metrics # Syncing columns self.columns = self.get_fk_many_from_list( obj.get('columns'), self.columns, self.column_class, 'column_name')
Returns a pandas dataframe based on the query object def get_query_result(self, query_object): """Returns a pandas dataframe based on the query object""" # Here, we assume that all the queries will use the same datasource, which is # is a valid assumption for current setting. In a long term, we may or maynot # support multiple queries from different data source. timestamp_format = None if self.datasource.type == 'table': dttm_col = self.datasource.get_col(query_object.granularity) if dttm_col: timestamp_format = dttm_col.python_date_format # The datasource here can be different backend but the interface is common result = self.datasource.query(query_object.to_dict()) df = result.df # Transform the timestamp we received from database to pandas supported # datetime format. If no python_date_format is specified, the pattern will # be considered as the default ISO date format # If the datetime format is unix, the parse will use the corresponding # parsing logic if df is not None and not df.empty: if DTTM_ALIAS in df.columns: if timestamp_format in ('epoch_s', 'epoch_ms'): # Column has already been formatted as a timestamp. df[DTTM_ALIAS] = df[DTTM_ALIAS].apply(pd.Timestamp) else: df[DTTM_ALIAS] = pd.to_datetime( df[DTTM_ALIAS], utc=False, format=timestamp_format) if self.datasource.offset: df[DTTM_ALIAS] += timedelta(hours=self.datasource.offset) df[DTTM_ALIAS] += query_object.time_shift if self.enforce_numerical_metrics: self.df_metrics_to_num(df, query_object) df.replace([np.inf, -np.inf], np.nan) return { 'query': result.query, 'status': result.status, 'error_message': result.error_message, 'df': df, }
Converting metrics to numeric when pandas.read_sql cannot def df_metrics_to_num(self, df, query_object): """Converting metrics to numeric when pandas.read_sql cannot""" metrics = [metric for metric in query_object.metrics] for col, dtype in df.dtypes.items(): if dtype.type == np.object_ and col in metrics: df[col] = pd.to_numeric(df[col], errors='coerce')
Returns a payload of metadata and data def get_single_payload(self, query_obj): """Returns a payload of metadata and data""" payload = self.get_df_payload(query_obj) df = payload.get('df') status = payload.get('status') if status != utils.QueryStatus.FAILED: if df is not None and df.empty: payload['error'] = 'No data' else: payload['data'] = self.get_data(df) if 'df' in payload: del payload['df'] return payload
Handles caching around the df paylod retrieval def get_df_payload(self, query_obj, **kwargs): """Handles caching around the df paylod retrieval""" cache_key = query_obj.cache_key( datasource=self.datasource.uid, **kwargs) if query_obj else None logging.info('Cache key: {}'.format(cache_key)) is_loaded = False stacktrace = None df = None cached_dttm = datetime.utcnow().isoformat().split('.')[0] cache_value = None status = None query = '' error_message = None if cache_key and cache and not self.force: cache_value = cache.get(cache_key) if cache_value: stats_logger.incr('loaded_from_cache') try: cache_value = pkl.loads(cache_value) df = cache_value['df'] query = cache_value['query'] status = utils.QueryStatus.SUCCESS is_loaded = True except Exception as e: logging.exception(e) logging.error('Error reading cache: ' + utils.error_msg_from_exception(e)) logging.info('Serving from cache') if query_obj and not is_loaded: try: query_result = self.get_query_result(query_obj) status = query_result['status'] query = query_result['query'] error_message = query_result['error_message'] df = query_result['df'] if status != utils.QueryStatus.FAILED: stats_logger.incr('loaded_from_source') is_loaded = True except Exception as e: logging.exception(e) if not error_message: error_message = '{}'.format(e) status = utils.QueryStatus.FAILED stacktrace = traceback.format_exc() if ( is_loaded and cache_key and cache and status != utils.QueryStatus.FAILED): try: cache_value = dict( dttm=cached_dttm, df=df if df is not None else None, query=query, ) cache_value = pkl.dumps( cache_value, protocol=pkl.HIGHEST_PROTOCOL) logging.info('Caching {} chars at key {}'.format( len(cache_value), cache_key)) stats_logger.incr('set_cache_key') cache.set( cache_key, cache_value, timeout=self.cache_timeout) except Exception as e: # cache.set call can fail if the backend is down or if # the key is too large or whatever other reasons logging.warning('Could not cache key {}'.format(cache_key)) logging.exception(e) cache.delete(cache_key) return { 'cache_key': cache_key, 'cached_dttm': cache_value['dttm'] if cache_value is not None else None, 'cache_timeout': self.cache_timeout, 'df': df, 'error': error_message, 'is_cached': cache_key is not None, 'query': query, 'status': status, 'stacktrace': stacktrace, 'rowcount': len(df.index) if df is not None else 0, }
Data used to render slice in templates def data(self): """Data used to render slice in templates""" d = {} self.token = '' try: d = self.viz.data self.token = d.get('token') except Exception as e: logging.exception(e) d['error'] = str(e) return { 'datasource': self.datasource_name, 'description': self.description, 'description_markeddown': self.description_markeddown, 'edit_url': self.edit_url, 'form_data': self.form_data, 'slice_id': self.id, 'slice_name': self.slice_name, 'slice_url': self.slice_url, 'modified': self.modified(), 'changed_on_humanized': self.changed_on_humanized, 'changed_on': self.changed_on.isoformat(), }
Creates :py:class:viz.BaseViz object from the url_params_multidict. :return: object of the 'viz_type' type that is taken from the url_params_multidict or self.params. :rtype: :py:class:viz.BaseViz def get_viz(self, force=False): """Creates :py:class:viz.BaseViz object from the url_params_multidict. :return: object of the 'viz_type' type that is taken from the url_params_multidict or self.params. :rtype: :py:class:viz.BaseViz """ slice_params = json.loads(self.params) slice_params['slice_id'] = self.id slice_params['json'] = 'false' slice_params['slice_name'] = self.slice_name slice_params['viz_type'] = self.viz_type if self.viz_type else 'table' return viz_types[slice_params.get('viz_type')]( self.datasource, form_data=slice_params, force=force, )
Inserts or overrides slc in the database. remote_id and import_time fields in params_dict are set to track the slice origin and ensure correct overrides for multiple imports. Slice.perm is used to find the datasources and connect them. :param Slice slc_to_import: Slice object to import :param Slice slc_to_override: Slice to replace, id matches remote_id :returns: The resulting id for the imported slice :rtype: int def import_obj(cls, slc_to_import, slc_to_override, import_time=None): """Inserts or overrides slc in the database. remote_id and import_time fields in params_dict are set to track the slice origin and ensure correct overrides for multiple imports. Slice.perm is used to find the datasources and connect them. :param Slice slc_to_import: Slice object to import :param Slice slc_to_override: Slice to replace, id matches remote_id :returns: The resulting id for the imported slice :rtype: int """ session = db.session make_transient(slc_to_import) slc_to_import.dashboards = [] slc_to_import.alter_params( remote_id=slc_to_import.id, import_time=import_time) slc_to_import = slc_to_import.copy() params = slc_to_import.params_dict slc_to_import.datasource_id = ConnectorRegistry.get_datasource_by_name( session, slc_to_import.datasource_type, params['datasource_name'], params['schema'], params['database_name']).id if slc_to_override: slc_to_override.override(slc_to_import) session.flush() return slc_to_override.id session.add(slc_to_import) logging.info('Final slice: {}'.format(slc_to_import.to_json())) session.flush() return slc_to_import.id
Imports the dashboard from the object to the database. Once dashboard is imported, json_metadata field is extended and stores remote_id and import_time. It helps to decide if the dashboard has to be overridden or just copies over. Slices that belong to this dashboard will be wired to existing tables. This function can be used to import/export dashboards between multiple superset instances. Audit metadata isn't copied over. def import_obj(cls, dashboard_to_import, import_time=None): """Imports the dashboard from the object to the database. Once dashboard is imported, json_metadata field is extended and stores remote_id and import_time. It helps to decide if the dashboard has to be overridden or just copies over. Slices that belong to this dashboard will be wired to existing tables. This function can be used to import/export dashboards between multiple superset instances. Audit metadata isn't copied over. """ def alter_positions(dashboard, old_to_new_slc_id_dict): """ Updates slice_ids in the position json. Sample position_json data: { "DASHBOARD_VERSION_KEY": "v2", "DASHBOARD_ROOT_ID": { "type": "DASHBOARD_ROOT_TYPE", "id": "DASHBOARD_ROOT_ID", "children": ["DASHBOARD_GRID_ID"] }, "DASHBOARD_GRID_ID": { "type": "DASHBOARD_GRID_TYPE", "id": "DASHBOARD_GRID_ID", "children": ["DASHBOARD_CHART_TYPE-2"] }, "DASHBOARD_CHART_TYPE-2": { "type": "DASHBOARD_CHART_TYPE", "id": "DASHBOARD_CHART_TYPE-2", "children": [], "meta": { "width": 4, "height": 50, "chartId": 118 } }, } """ position_data = json.loads(dashboard.position_json) position_json = position_data.values() for value in position_json: if (isinstance(value, dict) and value.get('meta') and value.get('meta').get('chartId')): old_slice_id = value.get('meta').get('chartId') if old_slice_id in old_to_new_slc_id_dict: value['meta']['chartId'] = ( old_to_new_slc_id_dict[old_slice_id] ) dashboard.position_json = json.dumps(position_data) logging.info('Started import of the dashboard: {}' .format(dashboard_to_import.to_json())) session = db.session logging.info('Dashboard has {} slices' .format(len(dashboard_to_import.slices))) # copy slices object as Slice.import_slice will mutate the slice # and will remove the existing dashboard - slice association slices = copy(dashboard_to_import.slices) old_to_new_slc_id_dict = {} new_filter_immune_slices = [] new_timed_refresh_immune_slices = [] new_expanded_slices = {} i_params_dict = dashboard_to_import.params_dict remote_id_slice_map = { slc.params_dict['remote_id']: slc for slc in session.query(Slice).all() if 'remote_id' in slc.params_dict } for slc in slices: logging.info('Importing slice {} from the dashboard: {}'.format( slc.to_json(), dashboard_to_import.dashboard_title)) remote_slc = remote_id_slice_map.get(slc.id) new_slc_id = Slice.import_obj(slc, remote_slc, import_time=import_time) old_to_new_slc_id_dict[slc.id] = new_slc_id # update json metadata that deals with slice ids new_slc_id_str = '{}'.format(new_slc_id) old_slc_id_str = '{}'.format(slc.id) if ('filter_immune_slices' in i_params_dict and old_slc_id_str in i_params_dict['filter_immune_slices']): new_filter_immune_slices.append(new_slc_id_str) if ('timed_refresh_immune_slices' in i_params_dict and old_slc_id_str in i_params_dict['timed_refresh_immune_slices']): new_timed_refresh_immune_slices.append(new_slc_id_str) if ('expanded_slices' in i_params_dict and old_slc_id_str in i_params_dict['expanded_slices']): new_expanded_slices[new_slc_id_str] = ( i_params_dict['expanded_slices'][old_slc_id_str]) # override the dashboard existing_dashboard = None for dash in session.query(Dashboard).all(): if ('remote_id' in dash.params_dict and dash.params_dict['remote_id'] == dashboard_to_import.id): existing_dashboard = dash dashboard_to_import.id = None alter_positions(dashboard_to_import, old_to_new_slc_id_dict) dashboard_to_import.alter_params(import_time=import_time) if new_expanded_slices: dashboard_to_import.alter_params( expanded_slices=new_expanded_slices) if new_filter_immune_slices: dashboard_to_import.alter_params( filter_immune_slices=new_filter_immune_slices) if new_timed_refresh_immune_slices: dashboard_to_import.alter_params( timed_refresh_immune_slices=new_timed_refresh_immune_slices) new_slices = session.query(Slice).filter( Slice.id.in_(old_to_new_slc_id_dict.values())).all() if existing_dashboard: existing_dashboard.override(dashboard_to_import) existing_dashboard.slices = new_slices session.flush() return existing_dashboard.id else: # session.add(dashboard_to_import) causes sqlachemy failures # related to the attached users / slices. Creating new object # allows to avoid conflicts in the sql alchemy state. copied_dash = dashboard_to_import.copy() copied_dash.slices = new_slices session.add(copied_dash) session.flush() return copied_dash.id
Get the effective user, especially during impersonation. :param url: SQL Alchemy URL object :param user_name: Default username :return: The effective username def get_effective_user(self, url, user_name=None): """ Get the effective user, especially during impersonation. :param url: SQL Alchemy URL object :param user_name: Default username :return: The effective username """ effective_username = None if self.impersonate_user: effective_username = url.username if user_name: effective_username = user_name elif ( hasattr(g, 'user') and hasattr(g.user, 'username') and g.user.username is not None ): effective_username = g.user.username return effective_username
Generates a ``select *`` statement in the proper dialect def select_star( self, table_name, schema=None, limit=100, show_cols=False, indent=True, latest_partition=False, cols=None): """Generates a ``select *`` statement in the proper dialect""" eng = self.get_sqla_engine( schema=schema, source=utils.sources.get('sql_lab', None)) return self.db_engine_spec.select_star( self, table_name, schema=schema, engine=eng, limit=limit, show_cols=show_cols, indent=indent, latest_partition=latest_partition, cols=cols)
Parameters need to be passed as keyword arguments. def all_table_names_in_database(self, cache=False, cache_timeout=None, force=False): """Parameters need to be passed as keyword arguments.""" if not self.allow_multi_schema_metadata_fetch: return [] return self.db_engine_spec.fetch_result_sets(self, 'table')
Parameters need to be passed as keyword arguments. For unused parameters, they are referenced in cache_util.memoized_func decorator. :param schema: schema name :type schema: str :param cache: whether cache is enabled for the function :type cache: bool :param cache_timeout: timeout in seconds for the cache :type cache_timeout: int :param force: whether to force refresh the cache :type force: bool :return: table list :rtype: list def all_table_names_in_schema(self, schema, cache=False, cache_timeout=None, force=False): """Parameters need to be passed as keyword arguments. For unused parameters, they are referenced in cache_util.memoized_func decorator. :param schema: schema name :type schema: str :param cache: whether cache is enabled for the function :type cache: bool :param cache_timeout: timeout in seconds for the cache :type cache_timeout: int :param force: whether to force refresh the cache :type force: bool :return: table list :rtype: list """ tables = [] try: tables = self.db_engine_spec.get_table_names( inspector=self.inspector, schema=schema) except Exception as e: logging.exception(e) return tables
Parameters need to be passed as keyword arguments. For unused parameters, they are referenced in cache_util.memoized_func decorator. :param schema: schema name :type schema: str :param cache: whether cache is enabled for the function :type cache: bool :param cache_timeout: timeout in seconds for the cache :type cache_timeout: int :param force: whether to force refresh the cache :type force: bool :return: view list :rtype: list def all_view_names_in_schema(self, schema, cache=False, cache_timeout=None, force=False): """Parameters need to be passed as keyword arguments. For unused parameters, they are referenced in cache_util.memoized_func decorator. :param schema: schema name :type schema: str :param cache: whether cache is enabled for the function :type cache: bool :param cache_timeout: timeout in seconds for the cache :type cache_timeout: int :param force: whether to force refresh the cache :type force: bool :return: view list :rtype: list """ views = [] try: views = self.db_engine_spec.get_view_names( inspector=self.inspector, schema=schema) except Exception as e: logging.exception(e) return views
Parameters need to be passed as keyword arguments. For unused parameters, they are referenced in cache_util.memoized_func decorator. :param cache: whether cache is enabled for the function :type cache: bool :param cache_timeout: timeout in seconds for the cache :type cache_timeout: int :param force: whether to force refresh the cache :type force: bool :return: schema list :rtype: list def all_schema_names(self, cache=False, cache_timeout=None, force=False): """Parameters need to be passed as keyword arguments. For unused parameters, they are referenced in cache_util.memoized_func decorator. :param cache: whether cache is enabled for the function :type cache: bool :param cache_timeout: timeout in seconds for the cache :type cache_timeout: int :param force: whether to force refresh the cache :type force: bool :return: schema list :rtype: list """ return self.db_engine_spec.get_schema_names(self.inspector)
Allowing to lookup grain by either label or duration For backward compatibility def grains_dict(self): """Allowing to lookup grain by either label or duration For backward compatibility""" d = {grain.duration: grain for grain in self.grains()} d.update({grain.label: grain for grain in self.grains()}) return d
Decorator to log user actions def log_this(cls, f): """Decorator to log user actions""" @functools.wraps(f) def wrapper(*args, **kwargs): user_id = None if g.user: user_id = g.user.get_id() d = request.form.to_dict() or {} # request parameters can overwrite post body request_params = request.args.to_dict() d.update(request_params) d.update(kwargs) slice_id = d.get('slice_id') dashboard_id = d.get('dashboard_id') try: slice_id = int( slice_id or json.loads(d.get('form_data')).get('slice_id')) except (ValueError, TypeError): slice_id = 0 stats_logger.incr(f.__name__) start_dttm = datetime.now() value = f(*args, **kwargs) duration_ms = (datetime.now() - start_dttm).total_seconds() * 1000 # bulk insert try: explode_by = d.get('explode') records = json.loads(d.get(explode_by)) except Exception: records = [d] referrer = request.referrer[:1000] if request.referrer else None logs = [] for record in records: try: json_string = json.dumps(record) except Exception: json_string = None log = cls( action=f.__name__, json=json_string, dashboard_id=dashboard_id, slice_id=slice_id, duration_ms=duration_ms, referrer=referrer, user_id=user_id) logs.append(log) sesh = db.session() sesh.bulk_save_objects(logs) sesh.commit() return value return wrapper
A decorator to label an endpoint as an API. Catches uncaught exceptions and return the response in the JSON format def api(f): """ A decorator to label an endpoint as an API. Catches uncaught exceptions and return the response in the JSON format """ def wraps(self, *args, **kwargs): try: return f(self, *args, **kwargs) except Exception as e: logging.exception(e) return json_error_response(get_error_msg()) return functools.update_wrapper(wraps, f)
A decorator to catch superset exceptions. Use it after the @api decorator above so superset exception handler is triggered before the handler for generic exceptions. def handle_api_exception(f): """ A decorator to catch superset exceptions. Use it after the @api decorator above so superset exception handler is triggered before the handler for generic exceptions. """ def wraps(self, *args, **kwargs): try: return f(self, *args, **kwargs) except SupersetSecurityException as e: logging.exception(e) return json_error_response(utils.error_msg_from_exception(e), status=e.status, stacktrace=traceback.format_exc(), link=e.link) except SupersetException as e: logging.exception(e) return json_error_response(utils.error_msg_from_exception(e), stacktrace=traceback.format_exc(), status=e.status) except Exception as e: logging.exception(e) return json_error_response(utils.error_msg_from_exception(e), stacktrace=traceback.format_exc()) return functools.update_wrapper(wraps, f)
Meant to be used in `pre_update` hooks on models to enforce ownership Admin have all access, and other users need to be referenced on either the created_by field that comes with the ``AuditMixin``, or in a field named ``owners`` which is expected to be a one-to-many with the User model. It is meant to be used in the ModelView's pre_update hook in which raising will abort the update. def check_ownership(obj, raise_if_false=True): """Meant to be used in `pre_update` hooks on models to enforce ownership Admin have all access, and other users need to be referenced on either the created_by field that comes with the ``AuditMixin``, or in a field named ``owners`` which is expected to be a one-to-many with the User model. It is meant to be used in the ModelView's pre_update hook in which raising will abort the update. """ if not obj: return False security_exception = SupersetSecurityException( "You don't have the rights to alter [{}]".format(obj)) if g.user.is_anonymous: if raise_if_false: raise security_exception return False roles = [r.name for r in get_user_roles()] if 'Admin' in roles: return True session = db.create_scoped_session() orig_obj = session.query(obj.__class__).filter_by(id=obj.id).first() # Making a list of owners that works across ORM models owners = [] if hasattr(orig_obj, 'owners'): owners += orig_obj.owners if hasattr(orig_obj, 'owner'): owners += [orig_obj.owner] if hasattr(orig_obj, 'created_by'): owners += [orig_obj.created_by] owner_names = [o.username for o in owners if o] if ( g.user and hasattr(g.user, 'username') and g.user.username in owner_names): return True if raise_if_false: raise security_exception else: return False
Customize how fields are bound by stripping all whitespace. :param form: The form :param unbound_field: The unbound field :param options: The field options :returns: The bound field def bind_field( self, form: DynamicForm, unbound_field: UnboundField, options: Dict[Any, Any], ) -> Field: """ Customize how fields are bound by stripping all whitespace. :param form: The form :param unbound_field: The unbound field :param options: The field options :returns: The bound field """ filters = unbound_field.kwargs.get('filters', []) filters.append(lambda x: x.strip() if isinstance(x, str) else x) return unbound_field.bind(form=form, filters=filters, **options)
Common data always sent to the client def common_bootsrap_payload(self): """Common data always sent to the client""" messages = get_flashed_messages(with_categories=True) locale = str(get_locale()) return { 'flash_messages': messages, 'conf': {k: conf.get(k) for k in FRONTEND_CONF_KEYS}, 'locale': locale, 'language_pack': get_language_pack(locale), 'feature_flags': get_feature_flags(), }
Delete function logic, override to implement diferent logic deletes the record with primary_key = pk :param pk: record primary key to delete def _delete(self, pk): """ Delete function logic, override to implement diferent logic deletes the record with primary_key = pk :param pk: record primary key to delete """ item = self.datamodel.get(pk, self._base_filters) if not item: abort(404) try: self.pre_delete(item) except Exception as e: flash(str(e), 'danger') else: view_menu = security_manager.find_view_menu(item.get_perm()) pvs = security_manager.get_session.query( security_manager.permissionview_model).filter_by( view_menu=view_menu).all() schema_view_menu = None if hasattr(item, 'schema_perm'): schema_view_menu = security_manager.find_view_menu(item.schema_perm) pvs.extend(security_manager.get_session.query( security_manager.permissionview_model).filter_by( view_menu=schema_view_menu).all()) if self.datamodel.delete(item): self.post_delete(item) for pv in pvs: security_manager.get_session.delete(pv) if view_menu: security_manager.get_session.delete(view_menu) if schema_view_menu: security_manager.get_session.delete(schema_view_menu) security_manager.get_session.commit() flash(*self.datamodel.message) self.update_redirect()
Returns a set of tuples with the perm name and view menu name def get_all_permissions(self): """Returns a set of tuples with the perm name and view menu name""" perms = set() for role in self.get_user_roles(): for perm_view in role.permissions: t = (perm_view.permission.name, perm_view.view_menu.name) perms.add(t) return perms
Returns the details of view_menus for a perm name def get_view_menus(self, permission_name): """Returns the details of view_menus for a perm name""" vm = set() for perm_name, vm_name in self.get_all_permissions(): if perm_name == permission_name: vm.add(vm_name) return vm
Destroy a driver def destroy_webdriver(driver): """ Destroy a driver """ # This is some very flaky code in selenium. Hence the retries # and catch-all exceptions try: retry_call(driver.close, tries=2) except Exception: pass try: driver.quit() except Exception: pass
Given a schedule, delivery the dashboard as an email report def deliver_dashboard(schedule): """ Given a schedule, delivery the dashboard as an email report """ dashboard = schedule.dashboard dashboard_url = _get_url_path( 'Superset.dashboard', dashboard_id=dashboard.id, ) # Create a driver, fetch the page, wait for the page to render driver = create_webdriver() window = config.get('WEBDRIVER_WINDOW')['dashboard'] driver.set_window_size(*window) driver.get(dashboard_url) time.sleep(PAGE_RENDER_WAIT) # Set up a function to retry once for the element. # This is buggy in certain selenium versions with firefox driver get_element = getattr(driver, 'find_element_by_class_name') element = retry_call( get_element, fargs=['grid-container'], tries=2, delay=PAGE_RENDER_WAIT, ) try: screenshot = element.screenshot_as_png except WebDriverException: # Some webdrivers do not support screenshots for elements. # In such cases, take a screenshot of the entire page. screenshot = driver.screenshot() # pylint: disable=no-member finally: destroy_webdriver(driver) # Generate the email body and attachments email = _generate_mail_content( schedule, screenshot, dashboard.dashboard_title, dashboard_url, ) subject = __( '%(prefix)s %(title)s', prefix=config.get('EMAIL_REPORTS_SUBJECT_PREFIX'), title=dashboard.dashboard_title, ) _deliver_email(schedule, subject, email)
Given a schedule, delivery the slice as an email report def deliver_slice(schedule): """ Given a schedule, delivery the slice as an email report """ if schedule.email_format == SliceEmailReportFormat.data: email = _get_slice_data(schedule) elif schedule.email_format == SliceEmailReportFormat.visualization: email = _get_slice_visualization(schedule) else: raise RuntimeError('Unknown email report format') subject = __( '%(prefix)s %(title)s', prefix=config.get('EMAIL_REPORTS_SUBJECT_PREFIX'), title=schedule.slice.slice_name, ) _deliver_email(schedule, subject, email)
Find all active schedules and schedule celery tasks for each of them with a specific ETA (determined by parsing the cron schedule for the schedule) def schedule_window(report_type, start_at, stop_at, resolution): """ Find all active schedules and schedule celery tasks for each of them with a specific ETA (determined by parsing the cron schedule for the schedule) """ model_cls = get_scheduler_model(report_type) dbsession = db.create_scoped_session() schedules = dbsession.query(model_cls).filter(model_cls.active.is_(True)) for schedule in schedules: args = ( report_type, schedule.id, ) # Schedule the job for the specified time window for eta in next_schedules(schedule.crontab, start_at, stop_at, resolution=resolution): schedule_email_report.apply_async(args, eta=eta)
Celery beat job meant to be invoked hourly def schedule_hourly(): """ Celery beat job meant to be invoked hourly """ if not config.get('ENABLE_SCHEDULED_EMAIL_REPORTS'): logging.info('Scheduled email reports not enabled in config') return resolution = config.get('EMAIL_REPORTS_CRON_RESOLUTION', 0) * 60 # Get the top of the hour start_at = datetime.now(tzlocal()).replace(microsecond=0, second=0, minute=0) stop_at = start_at + timedelta(seconds=3600) schedule_window(ScheduleType.dashboard.value, start_at, stop_at, resolution) schedule_window(ScheduleType.slice.value, start_at, stop_at, resolution)
De-duplicates a list of string by suffixing a counter Always returns the same number of entries as provided, and always returns unique values. Case sensitive comparison by default. >>> print(','.join(dedup(['foo', 'bar', 'bar', 'bar', 'Bar']))) foo,bar,bar__1,bar__2,Bar >>> print(','.join(dedup(['foo', 'bar', 'bar', 'bar', 'Bar'], case_sensitive=False))) foo,bar,bar__1,bar__2,Bar__3 def dedup(l, suffix='__', case_sensitive=True): """De-duplicates a list of string by suffixing a counter Always returns the same number of entries as provided, and always returns unique values. Case sensitive comparison by default. >>> print(','.join(dedup(['foo', 'bar', 'bar', 'bar', 'Bar']))) foo,bar,bar__1,bar__2,Bar >>> print(','.join(dedup(['foo', 'bar', 'bar', 'bar', 'Bar'], case_sensitive=False))) foo,bar,bar__1,bar__2,Bar__3 """ new_l = [] seen = {} for s in l: s_fixed_case = s if case_sensitive else s.lower() if s_fixed_case in seen: seen[s_fixed_case] += 1 s += suffix + str(seen[s_fixed_case]) else: seen[s_fixed_case] = 0 new_l.append(s) return new_l
Given a numpy dtype, Returns a generic database type def db_type(cls, dtype): """Given a numpy dtype, Returns a generic database type""" if isinstance(dtype, ExtensionDtype): return cls.type_map.get(dtype.kind) elif hasattr(dtype, 'char'): return cls.type_map.get(dtype.char)
Provides metadata about columns for data visualization. :return: dict, with the fields name, type, is_date, is_dim and agg. def columns(self): """Provides metadata about columns for data visualization. :return: dict, with the fields name, type, is_date, is_dim and agg. """ if self.df.empty: return None columns = [] sample_size = min(INFER_COL_TYPES_SAMPLE_SIZE, len(self.df.index)) sample = self.df if sample_size: sample = self.df.sample(sample_size) for col in self.df.dtypes.keys(): db_type_str = ( self._type_dict.get(col) or self.db_type(self.df.dtypes[col]) ) column = { 'name': col, 'agg': self.agg_func(self.df.dtypes[col], col), 'type': db_type_str, 'is_date': self.is_date(self.df.dtypes[col], db_type_str), 'is_dim': self.is_dimension(self.df.dtypes[col], col), } if not db_type_str or db_type_str.upper() == 'OBJECT': v = sample[col].iloc[0] if not sample[col].empty else None if isinstance(v, str): column['type'] = 'STRING' elif isinstance(v, int): column['type'] = 'INT' elif isinstance(v, float): column['type'] = 'FLOAT' elif isinstance(v, (datetime, date)): column['type'] = 'DATETIME' column['is_date'] = True column['is_dim'] = False # check if encoded datetime if ( column['type'] == 'STRING' and self.datetime_conversion_rate(sample[col]) > INFER_COL_TYPES_THRESHOLD): column.update({ 'is_date': True, 'is_dim': False, 'agg': None, }) # 'agg' is optional attribute if not column['agg']: column.pop('agg', None) columns.append(column) return columns
Getting the time component of the query def get_timestamp_expression(self, time_grain): """Getting the time component of the query""" label = utils.DTTM_ALIAS db = self.table.database pdf = self.python_date_format is_epoch = pdf in ('epoch_s', 'epoch_ms') if not self.expression and not time_grain and not is_epoch: sqla_col = column(self.column_name, type_=DateTime) return self.table.make_sqla_column_compatible(sqla_col, label) grain = None if time_grain: grain = db.grains_dict().get(time_grain) if not grain: raise NotImplementedError( f'No grain spec for {time_grain} for database {db.database_name}') col = db.db_engine_spec.get_timestamp_column(self.expression, self.column_name) expr = db.db_engine_spec.get_time_expr(col, pdf, time_grain, grain) sqla_col = literal_column(expr, type_=DateTime) return self.table.make_sqla_column_compatible(sqla_col, label)
Convert datetime object to a SQL expression string If database_expression is empty, the internal dttm will be parsed as the string with the pattern that the user inputted (python_date_format) If database_expression is not empty, the internal dttm will be parsed as the sql sentence for the database to convert def dttm_sql_literal(self, dttm, is_epoch_in_utc): """Convert datetime object to a SQL expression string If database_expression is empty, the internal dttm will be parsed as the string with the pattern that the user inputted (python_date_format) If database_expression is not empty, the internal dttm will be parsed as the sql sentence for the database to convert """ tf = self.python_date_format if self.database_expression: return self.database_expression.format(dttm.strftime('%Y-%m-%d %H:%M:%S')) elif tf: if is_epoch_in_utc: seconds_since_epoch = dttm.timestamp() else: seconds_since_epoch = (dttm - datetime(1970, 1, 1)).total_seconds() seconds_since_epoch = int(seconds_since_epoch) if tf == 'epoch_s': return str(seconds_since_epoch) elif tf == 'epoch_ms': return str(seconds_since_epoch * 1000) return "'{}'".format(dttm.strftime(tf)) else: s = self.table.database.db_engine_spec.convert_dttm( self.type or '', dttm) return s or "'{}'".format(dttm.strftime('%Y-%m-%d %H:%M:%S.%f'))
Takes a sql alchemy column object and adds label info if supported by engine. :param sqla_col: sql alchemy column instance :param label: alias/label that column is expected to have :return: either a sql alchemy column or label instance if supported by engine def make_sqla_column_compatible(self, sqla_col, label=None): """Takes a sql alchemy column object and adds label info if supported by engine. :param sqla_col: sql alchemy column instance :param label: alias/label that column is expected to have :return: either a sql alchemy column or label instance if supported by engine """ label_expected = label or sqla_col.name db_engine_spec = self.database.db_engine_spec if db_engine_spec.supports_column_aliases: label = db_engine_spec.make_label_compatible(label_expected) sqla_col = sqla_col.label(label) sqla_col._df_label_expected = label_expected return sqla_col
Runs query against sqla to retrieve some sample values for the given column. def values_for_column(self, column_name, limit=10000): """Runs query against sqla to retrieve some sample values for the given column. """ cols = {col.column_name: col for col in self.columns} target_col = cols[column_name] tp = self.get_template_processor() qry = ( select([target_col.get_sqla_col()]) .select_from(self.get_from_clause(tp)) .distinct() ) if limit: qry = qry.limit(limit) if self.fetch_values_predicate: tp = self.get_template_processor() qry = qry.where(tp.process_template(self.fetch_values_predicate)) engine = self.database.get_sqla_engine() sql = '{}'.format( qry.compile(engine, compile_kwargs={'literal_binds': True}), ) sql = self.mutate_query_from_config(sql) df = pd.read_sql_query(sql=sql, con=engine) return [row[0] for row in df.to_records(index=False)]
Apply config's SQL_QUERY_MUTATOR Typically adds comments to the query with context def mutate_query_from_config(self, sql): """Apply config's SQL_QUERY_MUTATOR Typically adds comments to the query with context""" SQL_QUERY_MUTATOR = config.get('SQL_QUERY_MUTATOR') if SQL_QUERY_MUTATOR: username = utils.get_username() sql = SQL_QUERY_MUTATOR(sql, username, security_manager, self.database) return sql
Turn an adhoc metric into a sqlalchemy column. :param dict metric: Adhoc metric definition :param dict cols: Columns for the current table :returns: The metric defined as a sqlalchemy column :rtype: sqlalchemy.sql.column def adhoc_metric_to_sqla(self, metric, cols): """ Turn an adhoc metric into a sqlalchemy column. :param dict metric: Adhoc metric definition :param dict cols: Columns for the current table :returns: The metric defined as a sqlalchemy column :rtype: sqlalchemy.sql.column """ expression_type = metric.get('expressionType') label = utils.get_metric_name(metric) if expression_type == utils.ADHOC_METRIC_EXPRESSION_TYPES['SIMPLE']: column_name = metric.get('column').get('column_name') table_column = cols.get(column_name) if table_column: sqla_column = table_column.get_sqla_col() else: sqla_column = column(column_name) sqla_metric = self.sqla_aggregations[metric.get('aggregate')](sqla_column) elif expression_type == utils.ADHOC_METRIC_EXPRESSION_TYPES['SQL']: sqla_metric = literal_column(metric.get('sqlExpression')) else: return None return self.make_sqla_column_compatible(sqla_metric, label)
Querying any sqla table from this common interface def get_sqla_query( # sqla self, groupby, metrics, granularity, from_dttm, to_dttm, filter=None, # noqa is_timeseries=True, timeseries_limit=15, timeseries_limit_metric=None, row_limit=None, inner_from_dttm=None, inner_to_dttm=None, orderby=None, extras=None, columns=None, order_desc=True, prequeries=None, is_prequery=False, ): """Querying any sqla table from this common interface""" template_kwargs = { 'from_dttm': from_dttm, 'groupby': groupby, 'metrics': metrics, 'row_limit': row_limit, 'to_dttm': to_dttm, 'filter': filter, 'columns': {col.column_name: col for col in self.columns}, } template_kwargs.update(self.template_params_dict) template_processor = self.get_template_processor(**template_kwargs) db_engine_spec = self.database.db_engine_spec orderby = orderby or [] # For backward compatibility if granularity not in self.dttm_cols: granularity = self.main_dttm_col # Database spec supports join-free timeslot grouping time_groupby_inline = db_engine_spec.time_groupby_inline cols = {col.column_name: col for col in self.columns} metrics_dict = {m.metric_name: m for m in self.metrics} if not granularity and is_timeseries: raise Exception(_( 'Datetime column not provided as part table configuration ' 'and is required by this type of chart')) if not groupby and not metrics and not columns: raise Exception(_('Empty query?')) metrics_exprs = [] for m in metrics: if utils.is_adhoc_metric(m): metrics_exprs.append(self.adhoc_metric_to_sqla(m, cols)) elif m in metrics_dict: metrics_exprs.append(metrics_dict.get(m).get_sqla_col()) else: raise Exception(_("Metric '{}' is not valid".format(m))) if metrics_exprs: main_metric_expr = metrics_exprs[0] else: main_metric_expr, label = literal_column('COUNT(*)'), 'ccount' main_metric_expr = self.make_sqla_column_compatible(main_metric_expr, label) select_exprs = [] groupby_exprs_sans_timestamp = OrderedDict() if groupby: select_exprs = [] for s in groupby: if s in cols: outer = cols[s].get_sqla_col() else: outer = literal_column(f'({s})') outer = self.make_sqla_column_compatible(outer, s) groupby_exprs_sans_timestamp[outer.name] = outer select_exprs.append(outer) elif columns: for s in columns: select_exprs.append( cols[s].get_sqla_col() if s in cols else self.make_sqla_column_compatible(literal_column(s))) metrics_exprs = [] groupby_exprs_with_timestamp = OrderedDict(groupby_exprs_sans_timestamp.items()) if granularity: dttm_col = cols[granularity] time_grain = extras.get('time_grain_sqla') time_filters = [] if is_timeseries: timestamp = dttm_col.get_timestamp_expression(time_grain) select_exprs += [timestamp] groupby_exprs_with_timestamp[timestamp.name] = timestamp # Use main dttm column to support index with secondary dttm columns if db_engine_spec.time_secondary_columns and \ self.main_dttm_col in self.dttm_cols and \ self.main_dttm_col != dttm_col.column_name: time_filters.append(cols[self.main_dttm_col]. get_time_filter(from_dttm, to_dttm)) time_filters.append(dttm_col.get_time_filter(from_dttm, to_dttm)) select_exprs += metrics_exprs labels_expected = [c._df_label_expected for c in select_exprs] select_exprs = db_engine_spec.make_select_compatible( groupby_exprs_with_timestamp.values(), select_exprs) qry = sa.select(select_exprs) tbl = self.get_from_clause(template_processor) if not columns: qry = qry.group_by(*groupby_exprs_with_timestamp.values()) where_clause_and = [] having_clause_and = [] for flt in filter: if not all([flt.get(s) for s in ['col', 'op']]): continue col = flt['col'] op = flt['op'] col_obj = cols.get(col) if col_obj: is_list_target = op in ('in', 'not in') eq = self.filter_values_handler( flt.get('val'), target_column_is_numeric=col_obj.is_num, is_list_target=is_list_target) if op in ('in', 'not in'): cond = col_obj.get_sqla_col().in_(eq) if '<NULL>' in eq: cond = or_(cond, col_obj.get_sqla_col() == None) # noqa if op == 'not in': cond = ~cond where_clause_and.append(cond) else: if col_obj.is_num: eq = utils.string_to_num(flt['val']) if op == '==': where_clause_and.append(col_obj.get_sqla_col() == eq) elif op == '!=': where_clause_and.append(col_obj.get_sqla_col() != eq) elif op == '>': where_clause_and.append(col_obj.get_sqla_col() > eq) elif op == '<': where_clause_and.append(col_obj.get_sqla_col() < eq) elif op == '>=': where_clause_and.append(col_obj.get_sqla_col() >= eq) elif op == '<=': where_clause_and.append(col_obj.get_sqla_col() <= eq) elif op == 'LIKE': where_clause_and.append(col_obj.get_sqla_col().like(eq)) elif op == 'IS NULL': where_clause_and.append(col_obj.get_sqla_col() == None) # noqa elif op == 'IS NOT NULL': where_clause_and.append( col_obj.get_sqla_col() != None) # noqa if extras: where = extras.get('where') if where: where = template_processor.process_template(where) where_clause_and += [sa.text('({})'.format(where))] having = extras.get('having') if having: having = template_processor.process_template(having) having_clause_and += [sa.text('({})'.format(having))] if granularity: qry = qry.where(and_(*(time_filters + where_clause_and))) else: qry = qry.where(and_(*where_clause_and)) qry = qry.having(and_(*having_clause_and)) if not orderby and not columns: orderby = [(main_metric_expr, not order_desc)] for col, ascending in orderby: direction = asc if ascending else desc if utils.is_adhoc_metric(col): col = self.adhoc_metric_to_sqla(col, cols) qry = qry.order_by(direction(col)) if row_limit: qry = qry.limit(row_limit) if is_timeseries and \ timeseries_limit and groupby and not time_groupby_inline: if self.database.db_engine_spec.inner_joins: # some sql dialects require for order by expressions # to also be in the select clause -- others, e.g. vertica, # require a unique inner alias inner_main_metric_expr = self.make_sqla_column_compatible( main_metric_expr, 'mme_inner__') inner_groupby_exprs = [] inner_select_exprs = [] for gby_name, gby_obj in groupby_exprs_sans_timestamp.items(): inner = self.make_sqla_column_compatible(gby_obj, gby_name + '__') inner_groupby_exprs.append(inner) inner_select_exprs.append(inner) inner_select_exprs += [inner_main_metric_expr] subq = select(inner_select_exprs).select_from(tbl) inner_time_filter = dttm_col.get_time_filter( inner_from_dttm or from_dttm, inner_to_dttm or to_dttm, ) subq = subq.where(and_(*(where_clause_and + [inner_time_filter]))) subq = subq.group_by(*inner_groupby_exprs) ob = inner_main_metric_expr if timeseries_limit_metric: ob = self._get_timeseries_orderby( timeseries_limit_metric, metrics_dict, cols, ) direction = desc if order_desc else asc subq = subq.order_by(direction(ob)) subq = subq.limit(timeseries_limit) on_clause = [] for gby_name, gby_obj in groupby_exprs_sans_timestamp.items(): # in this case the column name, not the alias, needs to be # conditionally mutated, as it refers to the column alias in # the inner query col_name = db_engine_spec.make_label_compatible(gby_name + '__') on_clause.append(gby_obj == column(col_name)) tbl = tbl.join(subq.alias(), and_(*on_clause)) else: if timeseries_limit_metric: orderby = [( self._get_timeseries_orderby( timeseries_limit_metric, metrics_dict, cols, ), False, )] # run subquery to get top groups subquery_obj = { 'prequeries': prequeries, 'is_prequery': True, 'is_timeseries': False, 'row_limit': timeseries_limit, 'groupby': groupby, 'metrics': metrics, 'granularity': granularity, 'from_dttm': inner_from_dttm or from_dttm, 'to_dttm': inner_to_dttm or to_dttm, 'filter': filter, 'orderby': orderby, 'extras': extras, 'columns': columns, 'order_desc': True, } result = self.query(subquery_obj) dimensions = [ c for c in result.df.columns if c not in metrics and c in groupby_exprs_sans_timestamp ] top_groups = self._get_top_groups(result.df, dimensions, groupby_exprs_sans_timestamp) qry = qry.where(top_groups) return SqlaQuery(sqla_query=qry.select_from(tbl), labels_expected=labels_expected)
Fetches the metadata for the table and merges it in def fetch_metadata(self): """Fetches the metadata for the table and merges it in""" try: table = self.get_sqla_table_object() except Exception as e: logging.exception(e) raise Exception(_( "Table [{}] doesn't seem to exist in the specified database, " "couldn't fetch column information").format(self.table_name)) M = SqlMetric # noqa metrics = [] any_date_col = None db_engine_spec = self.database.db_engine_spec db_dialect = self.database.get_dialect() dbcols = ( db.session.query(TableColumn) .filter(TableColumn.table == self) .filter(or_(TableColumn.column_name == col.name for col in table.columns))) dbcols = {dbcol.column_name: dbcol for dbcol in dbcols} for col in table.columns: try: datatype = col.type.compile(dialect=db_dialect).upper() except Exception as e: datatype = 'UNKNOWN' logging.error( 'Unrecognized data type in {}.{}'.format(table, col.name)) logging.exception(e) dbcol = dbcols.get(col.name, None) if not dbcol: dbcol = TableColumn(column_name=col.name, type=datatype) dbcol.sum = dbcol.is_num dbcol.avg = dbcol.is_num dbcol.is_dttm = dbcol.is_time db_engine_spec.alter_new_orm_column(dbcol) else: dbcol.type = datatype dbcol.groupby = True dbcol.filterable = True self.columns.append(dbcol) if not any_date_col and dbcol.is_time: any_date_col = col.name metrics.append(M( metric_name='count', verbose_name='COUNT(*)', metric_type='count', expression='COUNT(*)', )) if not self.main_dttm_col: self.main_dttm_col = any_date_col self.add_missing_metrics(metrics) db.session.merge(self) db.session.commit()
Imports the datasource from the object to the database. Metrics and columns and datasource will be overrided if exists. This function can be used to import/export dashboards between multiple superset instances. Audit metadata isn't copies over. def import_obj(cls, i_datasource, import_time=None): """Imports the datasource from the object to the database. Metrics and columns and datasource will be overrided if exists. This function can be used to import/export dashboards between multiple superset instances. Audit metadata isn't copies over. """ def lookup_sqlatable(table): return db.session.query(SqlaTable).join(Database).filter( SqlaTable.table_name == table.table_name, SqlaTable.schema == table.schema, Database.id == table.database_id, ).first() def lookup_database(table): return db.session.query(Database).filter_by( database_name=table.params_dict['database_name']).one() return import_datasource.import_datasource( db.session, i_datasource, lookup_database, lookup_sqlatable, import_time)
Loading lat/long data from a csv file in the repo def load_long_lat_data(): """Loading lat/long data from a csv file in the repo""" data = get_example_data('san_francisco.csv.gz', make_bytes=True) pdf = pd.read_csv(data, encoding='utf-8') start = datetime.datetime.now().replace( hour=0, minute=0, second=0, microsecond=0) pdf['datetime'] = [ start + datetime.timedelta(hours=i * 24 / (len(pdf) - 1)) for i in range(len(pdf)) ] pdf['occupancy'] = [random.randint(1, 6) for _ in range(len(pdf))] pdf['radius_miles'] = [random.uniform(1, 3) for _ in range(len(pdf))] pdf['geohash'] = pdf[['LAT', 'LON']].apply( lambda x: geohash.encode(*x), axis=1) pdf['delimited'] = pdf['LAT'].map(str).str.cat(pdf['LON'].map(str), sep=',') pdf.to_sql( # pylint: disable=no-member 'long_lat', db.engine, if_exists='replace', chunksize=500, dtype={ 'longitude': Float(), 'latitude': Float(), 'number': Float(), 'street': String(100), 'unit': String(10), 'city': String(50), 'district': String(50), 'region': String(50), 'postcode': Float(), 'id': String(100), 'datetime': DateTime(), 'occupancy': Float(), 'radius_miles': Float(), 'geohash': String(12), 'delimited': String(60), }, index=False) print('Done loading table!') print('-' * 80) print('Creating table reference') obj = db.session.query(TBL).filter_by(table_name='long_lat').first() if not obj: obj = TBL(table_name='long_lat') obj.main_dttm_col = 'datetime' obj.database = utils.get_or_create_main_db() db.session.merge(obj) db.session.commit() obj.fetch_metadata() tbl = obj slice_data = { 'granularity_sqla': 'day', 'since': '2014-01-01', 'until': 'now', 'where': '', 'viz_type': 'mapbox', 'all_columns_x': 'LON', 'all_columns_y': 'LAT', 'mapbox_style': 'mapbox://styles/mapbox/light-v9', 'all_columns': ['occupancy'], 'row_limit': 500000, } print('Creating a slice') slc = Slice( slice_name='Mapbox Long/Lat', viz_type='mapbox', datasource_type='table', datasource_id=tbl.id, params=get_slice_json(slice_data), ) misc_dash_slices.add(slc.slice_name) merge_slice(slc)
Gets column info from the source system def external_metadata(self, datasource_type=None, datasource_id=None): """Gets column info from the source system""" if datasource_type == 'druid': datasource = ConnectorRegistry.get_datasource( datasource_type, datasource_id, db.session) elif datasource_type == 'table': database = ( db.session .query(Database) .filter_by(id=request.args.get('db_id')) .one() ) Table = ConnectorRegistry.sources['table'] datasource = Table( database=database, table_name=request.args.get('table_name'), schema=request.args.get('schema') or None, ) external_metadata = datasource.external_metadata() return self.json_response(external_metadata)
Returns a list of non empty values or None def filter_not_empty_values(value): """Returns a list of non empty values or None""" if not value: return None data = [x for x in value if x] if not data: return None return data
If the user has access to the database or all datasource 1. if schemas_allowed_for_csv_upload is empty a) if database does not support schema user is able to upload csv without specifying schema name b) if database supports schema user is able to upload csv to any schema 2. if schemas_allowed_for_csv_upload is not empty a) if database does not support schema This situation is impossible and upload will fail b) if database supports schema user is able to upload to schema in schemas_allowed_for_csv_upload elif the user does not access to the database or all datasource 1. if schemas_allowed_for_csv_upload is empty a) if database does not support schema user is unable to upload csv b) if database supports schema user is unable to upload csv 2. if schemas_allowed_for_csv_upload is not empty a) if database does not support schema This situation is impossible and user is unable to upload csv b) if database supports schema user is able to upload to schema in schemas_allowed_for_csv_upload def at_least_one_schema_is_allowed(database): """ If the user has access to the database or all datasource 1. if schemas_allowed_for_csv_upload is empty a) if database does not support schema user is able to upload csv without specifying schema name b) if database supports schema user is able to upload csv to any schema 2. if schemas_allowed_for_csv_upload is not empty a) if database does not support schema This situation is impossible and upload will fail b) if database supports schema user is able to upload to schema in schemas_allowed_for_csv_upload elif the user does not access to the database or all datasource 1. if schemas_allowed_for_csv_upload is empty a) if database does not support schema user is unable to upload csv b) if database supports schema user is unable to upload csv 2. if schemas_allowed_for_csv_upload is not empty a) if database does not support schema This situation is impossible and user is unable to upload csv b) if database supports schema user is able to upload to schema in schemas_allowed_for_csv_upload """ if (security_manager.database_access(database) or security_manager.all_datasource_access()): return True schemas = database.get_schema_access_for_csv_upload() if (schemas and security_manager.schemas_accessible_by_user( database, schemas, False)): return True return False
Filter queries to only those owned by current user if can_only_access_owned_queries permission is set. :returns: query def apply( self, query: BaseQuery, func: Callable) -> BaseQuery: """ Filter queries to only those owned by current user if can_only_access_owned_queries permission is set. :returns: query """ if security_manager.can_only_access_owned_queries(): query = ( query .filter(Query.user_id == g.user.get_user_id()) ) return query
Simple hack to redirect to explore view after saving def edit(self, pk): """Simple hack to redirect to explore view after saving""" resp = super(TableModelView, self).edit(pk) if isinstance(resp, str): return resp return redirect('/superset/explore/table/{}/'.format(pk))
Get/cache a language pack Returns the langugage pack from cache if it exists, caches otherwise >>> get_language_pack('fr')['Dashboards'] "Tableaux de bords" def get_language_pack(locale): """Get/cache a language pack Returns the langugage pack from cache if it exists, caches otherwise >>> get_language_pack('fr')['Dashboards'] "Tableaux de bords" """ pack = ALL_LANGUAGE_PACKS.get(locale) if not pack: filename = DIR + '/{}/LC_MESSAGES/messages.json'.format(locale) try: with open(filename) as f: pack = json.load(f) ALL_LANGUAGE_PACKS[locale] = pack except Exception: # Assuming english, client side falls back on english pass return pack
Build `form_data` for chart GET request from dashboard's `default_filters`. When a dashboard has `default_filters` they need to be added as extra filters in the GET request for charts. def get_form_data(chart_id, dashboard=None): """ Build `form_data` for chart GET request from dashboard's `default_filters`. When a dashboard has `default_filters` they need to be added as extra filters in the GET request for charts. """ form_data = {'slice_id': chart_id} if dashboard is None or not dashboard.json_metadata: return form_data json_metadata = json.loads(dashboard.json_metadata) # do not apply filters if chart is immune to them if chart_id in json_metadata.get('filter_immune_slices', []): return form_data default_filters = json.loads(json_metadata.get('default_filters', 'null')) if not default_filters: return form_data # are some of the fields in the chart immune to filters? filter_immune_slice_fields = json_metadata.get('filter_immune_slice_fields', {}) immune_fields = filter_immune_slice_fields.get(str(chart_id), []) extra_filters = [] for filters in default_filters.values(): for col, val in filters.items(): if col not in immune_fields: extra_filters.append({'col': col, 'op': 'in', 'val': val}) if extra_filters: form_data['extra_filters'] = extra_filters return form_data
Return external URL for warming up a given chart/table cache. def get_url(params): """Return external URL for warming up a given chart/table cache.""" baseurl = 'http://{SUPERSET_WEBSERVER_ADDRESS}:{SUPERSET_WEBSERVER_PORT}/'.format( **app.config) with app.test_request_context(): return urllib.parse.urljoin( baseurl, url_for('Superset.explore_json', **params), )
Warm up cache. This task periodically hits charts to warm up the cache. def cache_warmup(strategy_name, *args, **kwargs): """ Warm up cache. This task periodically hits charts to warm up the cache. """ logger.info('Loading strategy') class_ = None for class_ in strategies: if class_.name == strategy_name: break else: message = f'No strategy {strategy_name} found!' logger.error(message) return message logger.info(f'Loading {class_.__name__}') try: strategy = class_(*args, **kwargs) logger.info('Success!') except TypeError: message = 'Error loading strategy!' logger.exception(message) return message results = {'success': [], 'errors': []} for url in strategy.get_urls(): try: logger.info(f'Fetching {url}') requests.get(url) results['success'].append(url) except RequestException: logger.exception('Error warming up cache!') results['errors'].append(url) return results
Mocked. Retrieve the logs produced by the execution of the query. Can be called multiple times to fetch the logs produced after the previous call. :returns: list<str> :raises: ``ProgrammingError`` when no query has been started .. note:: This is not a part of DB-API. def fetch_logs(self, max_rows=1024, orientation=None): """Mocked. Retrieve the logs produced by the execution of the query. Can be called multiple times to fetch the logs produced after the previous call. :returns: list<str> :raises: ``ProgrammingError`` when no query has been started .. note:: This is not a part of DB-API. """ from pyhive import hive from TCLIService import ttypes from thrift import Thrift orientation = orientation or ttypes.TFetchOrientation.FETCH_NEXT try: req = ttypes.TGetLogReq(operationHandle=self._operationHandle) logs = self._connection.client.GetLog(req).log return logs # raised if Hive is used except (ttypes.TApplicationException, Thrift.TApplicationException): if self._state == self._STATE_NONE: raise hive.ProgrammingError('No query yet') logs = [] while True: req = ttypes.TFetchResultsReq( operationHandle=self._operationHandle, orientation=ttypes.TFetchOrientation.FETCH_NEXT, maxRows=self.arraysize, fetchType=1, # 0: results, 1: logs ) response = self._connection.client.FetchResults(req) hive._check_status(response) assert not response.results.rows, \ 'expected data in columnar format' assert len(response.results.columns) == 1, response.results.columns new_logs = hive._unwrap_column(response.results.columns[0]) logs += new_logs if not new_logs: break return '\n'.join(logs)
Refresh metadata of all datasources in the cluster If ``datasource_name`` is specified, only that datasource is updated def refresh_datasources( self, datasource_name=None, merge_flag=True, refreshAll=True): """Refresh metadata of all datasources in the cluster If ``datasource_name`` is specified, only that datasource is updated """ ds_list = self.get_datasources() blacklist = conf.get('DRUID_DATA_SOURCE_BLACKLIST', []) ds_refresh = [] if not datasource_name: ds_refresh = list(filter(lambda ds: ds not in blacklist, ds_list)) elif datasource_name not in blacklist and datasource_name in ds_list: ds_refresh.append(datasource_name) else: return self.refresh(ds_refresh, merge_flag, refreshAll)
Fetches metadata for the specified datasources and merges to the Superset database def refresh(self, datasource_names, merge_flag, refreshAll): """ Fetches metadata for the specified datasources and merges to the Superset database """ session = db.session ds_list = ( session.query(DruidDatasource) .filter(DruidDatasource.cluster_name == self.cluster_name) .filter(DruidDatasource.datasource_name.in_(datasource_names)) ) ds_map = {ds.name: ds for ds in ds_list} for ds_name in datasource_names: datasource = ds_map.get(ds_name, None) if not datasource: datasource = DruidDatasource(datasource_name=ds_name) with session.no_autoflush: session.add(datasource) flasher( _('Adding new datasource [{}]').format(ds_name), 'success') ds_map[ds_name] = datasource elif refreshAll: flasher( _('Refreshing datasource [{}]').format(ds_name), 'info') else: del ds_map[ds_name] continue datasource.cluster = self datasource.merge_flag = merge_flag session.flush() # Prepare multithreaded executation pool = ThreadPool() ds_refresh = list(ds_map.values()) metadata = pool.map(_fetch_metadata_for, ds_refresh) pool.close() pool.join() for i in range(0, len(ds_refresh)): datasource = ds_refresh[i] cols = metadata[i] if cols: col_objs_list = ( session.query(DruidColumn) .filter(DruidColumn.datasource_id == datasource.id) .filter(DruidColumn.column_name.in_(cols.keys())) ) col_objs = {col.column_name: col for col in col_objs_list} for col in cols: if col == '__time': # skip the time column continue col_obj = col_objs.get(col) if not col_obj: col_obj = DruidColumn( datasource_id=datasource.id, column_name=col) with session.no_autoflush: session.add(col_obj) col_obj.type = cols[col]['type'] col_obj.datasource = datasource if col_obj.type == 'STRING': col_obj.groupby = True col_obj.filterable = True datasource.refresh_metrics() session.commit()
Refresh metrics based on the column metadata def refresh_metrics(self): """Refresh metrics based on the column metadata""" metrics = self.get_metrics() dbmetrics = ( db.session.query(DruidMetric) .filter(DruidMetric.datasource_id == self.datasource_id) .filter(DruidMetric.metric_name.in_(metrics.keys())) ) dbmetrics = {metric.metric_name: metric for metric in dbmetrics} for metric in metrics.values(): dbmetric = dbmetrics.get(metric.metric_name) if dbmetric: for attr in ['json', 'metric_type']: setattr(dbmetric, attr, getattr(metric, attr)) else: with db.session.no_autoflush: metric.datasource_id = self.datasource_id db.session.add(metric)
Imports the datasource from the object to the database. Metrics and columns and datasource will be overridden if exists. This function can be used to import/export dashboards between multiple superset instances. Audit metadata isn't copies over. def import_obj(cls, i_datasource, import_time=None): """Imports the datasource from the object to the database. Metrics and columns and datasource will be overridden if exists. This function can be used to import/export dashboards between multiple superset instances. Audit metadata isn't copies over. """ def lookup_datasource(d): return db.session.query(DruidDatasource).filter( DruidDatasource.datasource_name == d.datasource_name, DruidCluster.cluster_name == d.cluster_name, ).first() def lookup_cluster(d): return db.session.query(DruidCluster).filter_by( cluster_name=d.cluster_name).one() return import_datasource.import_datasource( db.session, i_datasource, lookup_cluster, lookup_datasource, import_time)
Merges the ds config from druid_config into one stored in the db. def sync_to_db_from_config( cls, druid_config, user, cluster, refresh=True): """Merges the ds config from druid_config into one stored in the db.""" session = db.session datasource = ( session.query(cls) .filter_by(datasource_name=druid_config['name']) .first() ) # Create a new datasource. if not datasource: datasource = cls( datasource_name=druid_config['name'], cluster=cluster, owners=[user], changed_by_fk=user.id, created_by_fk=user.id, ) session.add(datasource) elif not refresh: return dimensions = druid_config['dimensions'] col_objs = ( session.query(DruidColumn) .filter(DruidColumn.datasource_id == datasource.id) .filter(DruidColumn.column_name.in_(dimensions)) ) col_objs = {col.column_name: col for col in col_objs} for dim in dimensions: col_obj = col_objs.get(dim, None) if not col_obj: col_obj = DruidColumn( datasource_id=datasource.id, column_name=dim, groupby=True, filterable=True, # TODO: fetch type from Hive. type='STRING', datasource=datasource, ) session.add(col_obj) # Import Druid metrics metric_objs = ( session.query(DruidMetric) .filter(DruidMetric.datasource_id == datasource.id) .filter(DruidMetric.metric_name.in_( spec['name'] for spec in druid_config['metrics_spec'] )) ) metric_objs = {metric.metric_name: metric for metric in metric_objs} for metric_spec in druid_config['metrics_spec']: metric_name = metric_spec['name'] metric_type = metric_spec['type'] metric_json = json.dumps(metric_spec) if metric_type == 'count': metric_type = 'longSum' metric_json = json.dumps({ 'type': 'longSum', 'name': metric_name, 'fieldName': metric_name, }) metric_obj = metric_objs.get(metric_name, None) if not metric_obj: metric_obj = DruidMetric( metric_name=metric_name, metric_type=metric_type, verbose_name='%s(%s)' % (metric_type, metric_name), datasource=datasource, json=metric_json, description=( 'Imported from the airolap config dir for %s' % druid_config['name']), ) session.add(metric_obj) session.commit()
For a metric specified as `postagg` returns the kind of post aggregation for pydruid. def get_post_agg(mconf): """ For a metric specified as `postagg` returns the kind of post aggregation for pydruid. """ if mconf.get('type') == 'javascript': return JavascriptPostAggregator( name=mconf.get('name', ''), field_names=mconf.get('fieldNames', []), function=mconf.get('function', '')) elif mconf.get('type') == 'quantile': return Quantile( mconf.get('name', ''), mconf.get('probability', ''), ) elif mconf.get('type') == 'quantiles': return Quantiles( mconf.get('name', ''), mconf.get('probabilities', ''), ) elif mconf.get('type') == 'fieldAccess': return Field(mconf.get('name')) elif mconf.get('type') == 'constant': return Const( mconf.get('value'), output_name=mconf.get('name', ''), ) elif mconf.get('type') == 'hyperUniqueCardinality': return HyperUniqueCardinality( mconf.get('name'), ) elif mconf.get('type') == 'arithmetic': return Postaggregator( mconf.get('fn', '/'), mconf.get('fields', []), mconf.get('name', '')) else: return CustomPostAggregator( mconf.get('name', ''), mconf)
Return a list of metrics that are post aggregations def find_postaggs_for(postagg_names, metrics_dict): """Return a list of metrics that are post aggregations""" postagg_metrics = [ metrics_dict[name] for name in postagg_names if metrics_dict[name].metric_type == POST_AGG_TYPE ] # Remove post aggregations that were found for postagg in postagg_metrics: postagg_names.remove(postagg.metric_name) return postagg_metrics
Retrieve some values for the given column def values_for_column(self, column_name, limit=10000): """Retrieve some values for the given column""" logging.info( 'Getting values for columns [{}] limited to [{}]' .format(column_name, limit)) # TODO: Use Lexicographic TopNMetricSpec once supported by PyDruid if self.fetch_values_from: from_dttm = utils.parse_human_datetime(self.fetch_values_from) else: from_dttm = datetime(1970, 1, 1) qry = dict( datasource=self.datasource_name, granularity='all', intervals=from_dttm.isoformat() + '/' + datetime.now().isoformat(), aggregations=dict(count=count('count')), dimension=column_name, metric='count', threshold=limit, ) client = self.cluster.get_pydruid_client() client.topn(**qry) df = client.export_pandas() return [row[column_name] for row in df.to_records(index=False)]
Returns a dictionary of aggregation metric names to aggregation json objects :param metrics_dict: dictionary of all the metrics :param saved_metrics: list of saved metric names :param adhoc_metrics: list of adhoc metric names :raise SupersetException: if one or more metric names are not aggregations def get_aggregations(metrics_dict, saved_metrics, adhoc_metrics=[]): """ Returns a dictionary of aggregation metric names to aggregation json objects :param metrics_dict: dictionary of all the metrics :param saved_metrics: list of saved metric names :param adhoc_metrics: list of adhoc metric names :raise SupersetException: if one or more metric names are not aggregations """ aggregations = OrderedDict() invalid_metric_names = [] for metric_name in saved_metrics: if metric_name in metrics_dict: metric = metrics_dict[metric_name] if metric.metric_type == POST_AGG_TYPE: invalid_metric_names.append(metric_name) else: aggregations[metric_name] = metric.json_obj else: invalid_metric_names.append(metric_name) if len(invalid_metric_names) > 0: raise SupersetException( _('Metric(s) {} must be aggregations.').format(invalid_metric_names)) for adhoc_metric in adhoc_metrics: aggregations[adhoc_metric['label']] = { 'fieldName': adhoc_metric['column']['column_name'], 'fieldNames': [adhoc_metric['column']['column_name']], 'type': DruidDatasource.druid_type_from_adhoc_metric(adhoc_metric), 'name': adhoc_metric['label'], } return aggregations
Replace dimensions specs with their `dimension` values, and ignore those without def _dimensions_to_values(dimensions): """ Replace dimensions specs with their `dimension` values, and ignore those without """ values = [] for dimension in dimensions: if isinstance(dimension, dict): if 'extractionFn' in dimension: values.append(dimension) elif 'dimension' in dimension: values.append(dimension['dimension']) else: values.append(dimension) return values
Runs a query against Druid and returns a dataframe. def run_query( # noqa / druid self, groupby, metrics, granularity, from_dttm, to_dttm, filter=None, # noqa is_timeseries=True, timeseries_limit=None, timeseries_limit_metric=None, row_limit=None, inner_from_dttm=None, inner_to_dttm=None, orderby=None, extras=None, # noqa columns=None, phase=2, client=None, order_desc=True, prequeries=None, is_prequery=False, ): """Runs a query against Druid and returns a dataframe. """ # TODO refactor into using a TBD Query object client = client or self.cluster.get_pydruid_client() row_limit = row_limit or conf.get('ROW_LIMIT') if not is_timeseries: granularity = 'all' if granularity == 'all': phase = 1 inner_from_dttm = inner_from_dttm or from_dttm inner_to_dttm = inner_to_dttm or to_dttm timezone = from_dttm.replace(tzinfo=DRUID_TZ).tzname() if from_dttm else None query_str = '' metrics_dict = {m.metric_name: m for m in self.metrics} columns_dict = {c.column_name: c for c in self.columns} if ( self.cluster and LooseVersion(self.cluster.get_druid_version()) < LooseVersion('0.11.0') ): for metric in metrics: self.sanitize_metric_object(metric) self.sanitize_metric_object(timeseries_limit_metric) aggregations, post_aggs = DruidDatasource.metrics_and_post_aggs( metrics, metrics_dict) self.check_restricted_metrics(aggregations) # the dimensions list with dimensionSpecs expanded dimensions = self.get_dimensions(groupby, columns_dict) extras = extras or {} qry = dict( datasource=self.datasource_name, dimensions=dimensions, aggregations=aggregations, granularity=DruidDatasource.granularity( granularity, timezone=timezone, origin=extras.get('druid_time_origin'), ), post_aggregations=post_aggs, intervals=self.intervals_from_dttms(from_dttm, to_dttm), ) filters = DruidDatasource.get_filters(filter, self.num_cols, columns_dict) if filters: qry['filter'] = filters having_filters = self.get_having_filters(extras.get('having_druid')) if having_filters: qry['having'] = having_filters order_direction = 'descending' if order_desc else 'ascending' if columns: columns.append('__time') del qry['post_aggregations'] del qry['aggregations'] qry['dimensions'] = columns qry['metrics'] = [] qry['granularity'] = 'all' qry['limit'] = row_limit client.scan(**qry) elif len(groupby) == 0 and not having_filters: logging.info('Running timeseries query for no groupby values') del qry['dimensions'] client.timeseries(**qry) elif ( not having_filters and len(groupby) == 1 and order_desc ): dim = list(qry.get('dimensions'))[0] logging.info('Running two-phase topn query for dimension [{}]'.format(dim)) pre_qry = deepcopy(qry) if timeseries_limit_metric: order_by = utils.get_metric_name(timeseries_limit_metric) aggs_dict, post_aggs_dict = DruidDatasource.metrics_and_post_aggs( [timeseries_limit_metric], metrics_dict) if phase == 1: pre_qry['aggregations'].update(aggs_dict) pre_qry['post_aggregations'].update(post_aggs_dict) else: pre_qry['aggregations'] = aggs_dict pre_qry['post_aggregations'] = post_aggs_dict else: agg_keys = qry['aggregations'].keys() order_by = list(agg_keys)[0] if agg_keys else None # Limit on the number of timeseries, doing a two-phases query pre_qry['granularity'] = 'all' pre_qry['threshold'] = min(row_limit, timeseries_limit or row_limit) pre_qry['metric'] = order_by pre_qry['dimension'] = self._dimensions_to_values(qry.get('dimensions'))[0] del pre_qry['dimensions'] client.topn(**pre_qry) logging.info('Phase 1 Complete') if phase == 2: query_str += '// Two phase query\n// Phase 1\n' query_str += json.dumps( client.query_builder.last_query.query_dict, indent=2) query_str += '\n' if phase == 1: return query_str query_str += ( "// Phase 2 (built based on phase one's results)\n") df = client.export_pandas() qry['filter'] = self._add_filter_from_pre_query_data( df, [pre_qry['dimension']], filters) qry['threshold'] = timeseries_limit or 1000 if row_limit and granularity == 'all': qry['threshold'] = row_limit qry['dimension'] = dim del qry['dimensions'] qry['metric'] = list(qry['aggregations'].keys())[0] client.topn(**qry) logging.info('Phase 2 Complete') elif len(groupby) > 0 or having_filters: # If grouping on multiple fields or using a having filter # we have to force a groupby query logging.info('Running groupby query for dimensions [{}]'.format(dimensions)) if timeseries_limit and is_timeseries: logging.info('Running two-phase query for timeseries') pre_qry = deepcopy(qry) pre_qry_dims = self._dimensions_to_values(qry['dimensions']) # Can't use set on an array with dicts # Use set with non-dict items only non_dict_dims = list( set([x for x in pre_qry_dims if not isinstance(x, dict)]), ) dict_dims = [x for x in pre_qry_dims if isinstance(x, dict)] pre_qry['dimensions'] = non_dict_dims + dict_dims order_by = None if metrics: order_by = utils.get_metric_name(metrics[0]) else: order_by = pre_qry_dims[0] if timeseries_limit_metric: order_by = utils.get_metric_name(timeseries_limit_metric) aggs_dict, post_aggs_dict = DruidDatasource.metrics_and_post_aggs( [timeseries_limit_metric], metrics_dict) if phase == 1: pre_qry['aggregations'].update(aggs_dict) pre_qry['post_aggregations'].update(post_aggs_dict) else: pre_qry['aggregations'] = aggs_dict pre_qry['post_aggregations'] = post_aggs_dict # Limit on the number of timeseries, doing a two-phases query pre_qry['granularity'] = 'all' pre_qry['limit_spec'] = { 'type': 'default', 'limit': min(timeseries_limit, row_limit), 'intervals': self.intervals_from_dttms( inner_from_dttm, inner_to_dttm), 'columns': [{ 'dimension': order_by, 'direction': order_direction, }], } client.groupby(**pre_qry) logging.info('Phase 1 Complete') query_str += '// Two phase query\n// Phase 1\n' query_str += json.dumps( client.query_builder.last_query.query_dict, indent=2) query_str += '\n' if phase == 1: return query_str query_str += ( "// Phase 2 (built based on phase one's results)\n") df = client.export_pandas() qry['filter'] = self._add_filter_from_pre_query_data( df, pre_qry['dimensions'], filters, ) qry['limit_spec'] = None if row_limit: dimension_values = self._dimensions_to_values(dimensions) qry['limit_spec'] = { 'type': 'default', 'limit': row_limit, 'columns': [{ 'dimension': ( utils.get_metric_name( metrics[0], ) if metrics else dimension_values[0] ), 'direction': order_direction, }], } client.groupby(**qry) logging.info('Query Complete') query_str += json.dumps( client.query_builder.last_query.query_dict, indent=2) return query_str
Converting all GROUPBY columns to strings When grouping by a numeric (say FLOAT) column, pydruid returns strings in the dataframe. This creates issues downstream related to having mixed types in the dataframe Here we replace None with <NULL> and make the whole series a str instead of an object. def homogenize_types(df, groupby_cols): """Converting all GROUPBY columns to strings When grouping by a numeric (say FLOAT) column, pydruid returns strings in the dataframe. This creates issues downstream related to having mixed types in the dataframe Here we replace None with <NULL> and make the whole series a str instead of an object. """ for col in groupby_cols: df[col] = df[col].fillna('<NULL>').astype('unicode') return df
Given Superset filter data structure, returns pydruid Filter(s) def get_filters(cls, raw_filters, num_cols, columns_dict): # noqa """Given Superset filter data structure, returns pydruid Filter(s)""" filters = None for flt in raw_filters: col = flt.get('col') op = flt.get('op') eq = flt.get('val') if ( not col or not op or (eq is None and op not in ('IS NULL', 'IS NOT NULL'))): continue # Check if this dimension uses an extraction function # If so, create the appropriate pydruid extraction object column_def = columns_dict.get(col) dim_spec = column_def.dimension_spec if column_def else None extraction_fn = None if dim_spec and 'extractionFn' in dim_spec: (col, extraction_fn) = DruidDatasource._create_extraction_fn(dim_spec) cond = None is_numeric_col = col in num_cols is_list_target = op in ('in', 'not in') eq = cls.filter_values_handler( eq, is_list_target=is_list_target, target_column_is_numeric=is_numeric_col) # For these two ops, could have used Dimension, # but it doesn't support extraction functions if op == '==': cond = Filter(dimension=col, value=eq, extraction_function=extraction_fn) elif op == '!=': cond = ~Filter(dimension=col, value=eq, extraction_function=extraction_fn) elif op in ('in', 'not in'): fields = [] # ignore the filter if it has no value if not len(eq): continue # if it uses an extraction fn, use the "in" operator # as Dimension isn't supported elif extraction_fn is not None: cond = Filter( dimension=col, values=eq, type='in', extraction_function=extraction_fn, ) elif len(eq) == 1: cond = Dimension(col) == eq[0] else: for s in eq: fields.append(Dimension(col) == s) cond = Filter(type='or', fields=fields) if op == 'not in': cond = ~cond elif op == 'regex': cond = Filter( extraction_function=extraction_fn, type='regex', pattern=eq, dimension=col, ) # For the ops below, could have used pydruid's Bound, # but it doesn't support extraction functions elif op == '>=': cond = Filter( type='bound', extraction_function=extraction_fn, dimension=col, lowerStrict=False, upperStrict=False, lower=eq, upper=None, alphaNumeric=is_numeric_col, ) elif op == '<=': cond = Filter( type='bound', extraction_function=extraction_fn, dimension=col, lowerStrict=False, upperStrict=False, lower=None, upper=eq, alphaNumeric=is_numeric_col, ) elif op == '>': cond = Filter( type='bound', extraction_function=extraction_fn, lowerStrict=True, upperStrict=False, dimension=col, lower=eq, upper=None, alphaNumeric=is_numeric_col, ) elif op == '<': cond = Filter( type='bound', extraction_function=extraction_fn, upperStrict=True, lowerStrict=False, dimension=col, lower=None, upper=eq, alphaNumeric=is_numeric_col, ) elif op == 'IS NULL': cond = Dimension(col) == None # NOQA elif op == 'IS NOT NULL': cond = Dimension(col) != None # NOQA if filters: filters = Filter(type='and', fields=[ cond, filters, ]) else: filters = cond return filters
Get the environment variable or raise exception. def get_env_variable(var_name, default=None): """Get the environment variable or raise exception.""" try: return os.environ[var_name] except KeyError: if default is not None: return default else: error_msg = 'The environment variable {} was missing, abort...'\ .format(var_name) raise EnvironmentError(error_msg)
Returns datasource with columns and metrics. def get_eager_datasource(cls, session, datasource_type, datasource_id): """Returns datasource with columns and metrics.""" datasource_class = ConnectorRegistry.sources[datasource_type] return ( session.query(datasource_class) .options( subqueryload(datasource_class.columns), subqueryload(datasource_class.metrics), ) .filter_by(id=datasource_id) .one() )
Loading a dashboard featuring misc charts def load_misc_dashboard(): """Loading a dashboard featuring misc charts""" print('Creating the dashboard') db.session.expunge_all() dash = db.session.query(Dash).filter_by(slug=DASH_SLUG).first() if not dash: dash = Dash() js = textwrap.dedent("""\ { "CHART-BkeVbh8ANQ": { "children": [], "id": "CHART-BkeVbh8ANQ", "meta": { "chartId": 4004, "height": 34, "sliceName": "Multi Line", "width": 8 }, "type": "CHART" }, "CHART-H1HYNzEANX": { "children": [], "id": "CHART-H1HYNzEANX", "meta": { "chartId": 3940, "height": 50, "sliceName": "Energy Sankey", "width": 6 }, "type": "CHART" }, "CHART-HJOYVMV0E7": { "children": [], "id": "CHART-HJOYVMV0E7", "meta": { "chartId": 3969, "height": 63, "sliceName": "Mapbox Long/Lat", "width": 6 }, "type": "CHART" }, "CHART-S1WYNz4AVX": { "children": [], "id": "CHART-S1WYNz4AVX", "meta": { "chartId": 3989, "height": 25, "sliceName": "Parallel Coordinates", "width": 4 }, "type": "CHART" }, "CHART-r19KVMNCE7": { "children": [], "id": "CHART-r19KVMNCE7", "meta": { "chartId": 3971, "height": 34, "sliceName": "Calendar Heatmap multiformat 0", "width": 4 }, "type": "CHART" }, "CHART-rJ4K4GV04Q": { "children": [], "id": "CHART-rJ4K4GV04Q", "meta": { "chartId": 3941, "height": 63, "sliceName": "Energy Force Layout", "width": 6 }, "type": "CHART" }, "CHART-rkgF4G4A4X": { "children": [], "id": "CHART-rkgF4G4A4X", "meta": { "chartId": 3970, "height": 25, "sliceName": "Birth in France by department in 2016", "width": 8 }, "type": "CHART" }, "CHART-rywK4GVR4X": { "children": [], "id": "CHART-rywK4GVR4X", "meta": { "chartId": 3942, "height": 50, "sliceName": "Heatmap", "width": 6 }, "type": "CHART" }, "COLUMN-ByUFVf40EQ": { "children": [ "CHART-rywK4GVR4X", "CHART-HJOYVMV0E7" ], "id": "COLUMN-ByUFVf40EQ", "meta": { "background": "BACKGROUND_TRANSPARENT", "width": 6 }, "type": "COLUMN" }, "COLUMN-rkmYVGN04Q": { "children": [ "CHART-rJ4K4GV04Q", "CHART-H1HYNzEANX" ], "id": "COLUMN-rkmYVGN04Q", "meta": { "background": "BACKGROUND_TRANSPARENT", "width": 6 }, "type": "COLUMN" }, "GRID_ID": { "children": [ "ROW-SytNzNA4X", "ROW-S1MK4M4A4X", "ROW-HkFFEzVRVm" ], "id": "GRID_ID", "type": "GRID" }, "HEADER_ID": { "id": "HEADER_ID", "meta": { "text": "Misc Charts" }, "type": "HEADER" }, "ROOT_ID": { "children": [ "GRID_ID" ], "id": "ROOT_ID", "type": "ROOT" }, "ROW-HkFFEzVRVm": { "children": [ "CHART-r19KVMNCE7", "CHART-BkeVbh8ANQ" ], "id": "ROW-HkFFEzVRVm", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "ROW-S1MK4M4A4X": { "children": [ "COLUMN-rkmYVGN04Q", "COLUMN-ByUFVf40EQ" ], "id": "ROW-S1MK4M4A4X", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "ROW-SytNzNA4X": { "children": [ "CHART-rkgF4G4A4X", "CHART-S1WYNz4AVX" ], "id": "ROW-SytNzNA4X", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "DASHBOARD_VERSION_KEY": "v2" } """) pos = json.loads(js) slices = ( db.session .query(Slice) .filter(Slice.slice_name.in_(misc_dash_slices)) .all() ) slices = sorted(slices, key=lambda x: x.id) update_slice_ids(pos, slices) dash.dashboard_title = 'Misc Charts' dash.position_json = json.dumps(pos, indent=4) dash.slug = DASH_SLUG dash.slices = slices db.session.merge(dash) db.session.commit()
Loads the world bank health dataset, slices and a dashboard def load_world_bank_health_n_pop(): """Loads the world bank health dataset, slices and a dashboard""" tbl_name = 'wb_health_population' data = get_example_data('countries.json.gz') pdf = pd.read_json(data) pdf.columns = [col.replace('.', '_') for col in pdf.columns] pdf.year = pd.to_datetime(pdf.year) pdf.to_sql( tbl_name, db.engine, if_exists='replace', chunksize=50, dtype={ 'year': DateTime(), 'country_code': String(3), 'country_name': String(255), 'region': String(255), }, index=False) print('Creating table [wb_health_population] reference') tbl = db.session.query(TBL).filter_by(table_name=tbl_name).first() if not tbl: tbl = TBL(table_name=tbl_name) tbl.description = utils.readfile(os.path.join(DATA_FOLDER, 'countries.md')) tbl.main_dttm_col = 'year' tbl.database = utils.get_or_create_main_db() tbl.filter_select_enabled = True metrics = [ 'sum__SP_POP_TOTL', 'sum__SH_DYN_AIDS', 'sum__SH_DYN_AIDS', 'sum__SP_RUR_TOTL_ZS', 'sum__SP_DYN_LE00_IN', ] for m in metrics: if not any(col.metric_name == m for col in tbl.metrics): tbl.metrics.append(SqlMetric( metric_name=m, expression=f'{m[:3]}({m[5:]})', )) db.session.merge(tbl) db.session.commit() tbl.fetch_metadata() defaults = { 'compare_lag': '10', 'compare_suffix': 'o10Y', 'limit': '25', 'granularity_sqla': 'year', 'groupby': [], 'metric': 'sum__SP_POP_TOTL', 'metrics': ['sum__SP_POP_TOTL'], 'row_limit': config.get('ROW_LIMIT'), 'since': '2014-01-01', 'until': '2014-01-02', 'time_range': '2014-01-01 : 2014-01-02', 'where': '', 'markup_type': 'markdown', 'country_fieldtype': 'cca3', 'secondary_metric': 'sum__SP_POP_TOTL', 'entity': 'country_code', 'show_bubbles': True, } print('Creating slices') slices = [ Slice( slice_name='Region Filter', viz_type='filter_box', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='filter_box', date_filter=False, filter_configs=[ { 'asc': False, 'clearable': True, 'column': 'region', 'key': '2s98dfu', 'metric': 'sum__SP_POP_TOTL', 'multiple': True, }, { 'asc': False, 'clearable': True, 'key': 'li3j2lk', 'column': 'country_name', 'metric': 'sum__SP_POP_TOTL', 'multiple': True, }, ])), Slice( slice_name="World's Population", viz_type='big_number', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, since='2000', viz_type='big_number', compare_lag='10', metric='sum__SP_POP_TOTL', compare_suffix='over 10Y')), Slice( slice_name='Most Populated Countries', viz_type='table', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='table', metrics=['sum__SP_POP_TOTL'], groupby=['country_name'])), Slice( slice_name='Growth Rate', viz_type='line', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='line', since='1960-01-01', metrics=['sum__SP_POP_TOTL'], num_period_compare='10', groupby=['country_name'])), Slice( slice_name='% Rural', viz_type='world_map', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='world_map', metric='sum__SP_RUR_TOTL_ZS', num_period_compare='10')), Slice( slice_name='Life Expectancy VS Rural %', viz_type='bubble', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='bubble', since='2011-01-01', until='2011-01-02', series='region', limit=0, entity='country_name', x='sum__SP_RUR_TOTL_ZS', y='sum__SP_DYN_LE00_IN', size='sum__SP_POP_TOTL', max_bubble_size='50', filters=[{ 'col': 'country_code', 'val': [ 'TCA', 'MNP', 'DMA', 'MHL', 'MCO', 'SXM', 'CYM', 'TUV', 'IMY', 'KNA', 'ASM', 'ADO', 'AMA', 'PLW', ], 'op': 'not in'}], )), Slice( slice_name='Rural Breakdown', viz_type='sunburst', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='sunburst', groupby=['region', 'country_name'], secondary_metric='sum__SP_RUR_TOTL', since='2011-01-01', until='2011-01-01')), Slice( slice_name="World's Pop Growth", viz_type='area', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, since='1960-01-01', until='now', viz_type='area', groupby=['region'])), Slice( slice_name='Box plot', viz_type='box_plot', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, since='1960-01-01', until='now', whisker_options='Min/max (no outliers)', x_ticks_layout='staggered', viz_type='box_plot', groupby=['region'])), Slice( slice_name='Treemap', viz_type='treemap', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, since='1960-01-01', until='now', viz_type='treemap', metrics=['sum__SP_POP_TOTL'], groupby=['region', 'country_code'])), Slice( slice_name='Parallel Coordinates', viz_type='para', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, since='2011-01-01', until='2011-01-01', viz_type='para', limit=100, metrics=[ 'sum__SP_POP_TOTL', 'sum__SP_RUR_TOTL_ZS', 'sum__SH_DYN_AIDS'], secondary_metric='sum__SP_POP_TOTL', series='country_name')), ] misc_dash_slices.add(slices[-1].slice_name) for slc in slices: merge_slice(slc) print("Creating a World's Health Bank dashboard") dash_name = "World's Bank Data" slug = 'world_health' dash = db.session.query(Dash).filter_by(slug=slug).first() if not dash: dash = Dash() js = textwrap.dedent("""\ { "CHART-36bfc934": { "children": [], "id": "CHART-36bfc934", "meta": { "chartId": 40, "height": 25, "sliceName": "Region Filter", "width": 2 }, "type": "CHART" }, "CHART-37982887": { "children": [], "id": "CHART-37982887", "meta": { "chartId": 41, "height": 25, "sliceName": "World's Population", "width": 2 }, "type": "CHART" }, "CHART-17e0f8d8": { "children": [], "id": "CHART-17e0f8d8", "meta": { "chartId": 42, "height": 92, "sliceName": "Most Populated Countries", "width": 3 }, "type": "CHART" }, "CHART-2ee52f30": { "children": [], "id": "CHART-2ee52f30", "meta": { "chartId": 43, "height": 38, "sliceName": "Growth Rate", "width": 6 }, "type": "CHART" }, "CHART-2d5b6871": { "children": [], "id": "CHART-2d5b6871", "meta": { "chartId": 44, "height": 52, "sliceName": "% Rural", "width": 7 }, "type": "CHART" }, "CHART-0fd0d252": { "children": [], "id": "CHART-0fd0d252", "meta": { "chartId": 45, "height": 50, "sliceName": "Life Expectancy VS Rural %", "width": 8 }, "type": "CHART" }, "CHART-97f4cb48": { "children": [], "id": "CHART-97f4cb48", "meta": { "chartId": 46, "height": 38, "sliceName": "Rural Breakdown", "width": 3 }, "type": "CHART" }, "CHART-b5e05d6f": { "children": [], "id": "CHART-b5e05d6f", "meta": { "chartId": 47, "height": 50, "sliceName": "World's Pop Growth", "width": 4 }, "type": "CHART" }, "CHART-e76e9f5f": { "children": [], "id": "CHART-e76e9f5f", "meta": { "chartId": 48, "height": 50, "sliceName": "Box plot", "width": 4 }, "type": "CHART" }, "CHART-a4808bba": { "children": [], "id": "CHART-a4808bba", "meta": { "chartId": 49, "height": 50, "sliceName": "Treemap", "width": 8 }, "type": "CHART" }, "COLUMN-071bbbad": { "children": [ "ROW-1e064e3c", "ROW-afdefba9" ], "id": "COLUMN-071bbbad", "meta": { "background": "BACKGROUND_TRANSPARENT", "width": 9 }, "type": "COLUMN" }, "COLUMN-fe3914b8": { "children": [ "CHART-36bfc934", "CHART-37982887" ], "id": "COLUMN-fe3914b8", "meta": { "background": "BACKGROUND_TRANSPARENT", "width": 2 }, "type": "COLUMN" }, "GRID_ID": { "children": [ "ROW-46632bc2", "ROW-3fa26c5d", "ROW-812b3f13" ], "id": "GRID_ID", "type": "GRID" }, "HEADER_ID": { "id": "HEADER_ID", "meta": { "text": "World's Bank Data" }, "type": "HEADER" }, "ROOT_ID": { "children": [ "GRID_ID" ], "id": "ROOT_ID", "type": "ROOT" }, "ROW-1e064e3c": { "children": [ "COLUMN-fe3914b8", "CHART-2d5b6871" ], "id": "ROW-1e064e3c", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "ROW-3fa26c5d": { "children": [ "CHART-b5e05d6f", "CHART-0fd0d252" ], "id": "ROW-3fa26c5d", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "ROW-46632bc2": { "children": [ "COLUMN-071bbbad", "CHART-17e0f8d8" ], "id": "ROW-46632bc2", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "ROW-812b3f13": { "children": [ "CHART-a4808bba", "CHART-e76e9f5f" ], "id": "ROW-812b3f13", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "ROW-afdefba9": { "children": [ "CHART-2ee52f30", "CHART-97f4cb48" ], "id": "ROW-afdefba9", "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW" }, "DASHBOARD_VERSION_KEY": "v2" } """) pos = json.loads(js) update_slice_ids(pos, slices) dash.dashboard_title = dash_name dash.position_json = json.dumps(pos, indent=4) dash.slug = slug dash.slices = slices[:-1] db.session.merge(dash) db.session.commit()
Loading data for map with country map def load_country_map_data(): """Loading data for map with country map""" csv_bytes = get_example_data( 'birth_france_data_for_country_map.csv', is_gzip=False, make_bytes=True) data = pd.read_csv(csv_bytes, encoding='utf-8') data['dttm'] = datetime.datetime.now().date() data.to_sql( # pylint: disable=no-member 'birth_france_by_region', db.engine, if_exists='replace', chunksize=500, dtype={ 'DEPT_ID': String(10), '2003': BigInteger, '2004': BigInteger, '2005': BigInteger, '2006': BigInteger, '2007': BigInteger, '2008': BigInteger, '2009': BigInteger, '2010': BigInteger, '2011': BigInteger, '2012': BigInteger, '2013': BigInteger, '2014': BigInteger, 'dttm': Date(), }, index=False) print('Done loading table!') print('-' * 80) print('Creating table reference') obj = db.session.query(TBL).filter_by(table_name='birth_france_by_region').first() if not obj: obj = TBL(table_name='birth_france_by_region') obj.main_dttm_col = 'dttm' obj.database = utils.get_or_create_main_db() if not any(col.metric_name == 'avg__2004' for col in obj.metrics): obj.metrics.append(SqlMetric( metric_name='avg__2004', expression='AVG(2004)', )) db.session.merge(obj) db.session.commit() obj.fetch_metadata() tbl = obj slice_data = { 'granularity_sqla': '', 'since': '', 'until': '', 'where': '', 'viz_type': 'country_map', 'entity': 'DEPT_ID', 'metric': { 'expressionType': 'SIMPLE', 'column': { 'type': 'INT', 'column_name': '2004', }, 'aggregate': 'AVG', 'label': 'Boys', 'optionName': 'metric_112342', }, 'row_limit': 500000, } print('Creating a slice') slc = Slice( slice_name='Birth in France by department in 2016', viz_type='country_map', datasource_type='table', datasource_id=tbl.id, params=get_slice_json(slice_data), ) misc_dash_slices.add(slc.slice_name) merge_slice(slc)
Returns a list of SQL statements as strings, stripped def get_statements(self): """Returns a list of SQL statements as strings, stripped""" statements = [] for statement in self._parsed: if statement: sql = str(statement).strip(' \n;\t') if sql: statements.append(sql) return statements
Reformats the query into the create table as query. Works only for the single select SQL statements, in all other cases the sql query is not modified. :param superset_query: string, sql query that will be executed :param table_name: string, will contain the results of the query execution :param overwrite, boolean, table table_name will be dropped if true :return: string, create table as query def as_create_table(self, table_name, overwrite=False): """Reformats the query into the create table as query. Works only for the single select SQL statements, in all other cases the sql query is not modified. :param superset_query: string, sql query that will be executed :param table_name: string, will contain the results of the query execution :param overwrite, boolean, table table_name will be dropped if true :return: string, create table as query """ exec_sql = '' sql = self.stripped() if overwrite: exec_sql = f'DROP TABLE IF EXISTS {table_name};\n' exec_sql += f'CREATE TABLE {table_name} AS \n{sql}' return exec_sql
returns the query with the specified limit def get_query_with_new_limit(self, new_limit): """returns the query with the specified limit""" """does not change the underlying query""" if not self._limit: return self.sql + ' LIMIT ' + str(new_limit) limit_pos = None tokens = self._parsed[0].tokens # Add all items to before_str until there is a limit for pos, item in enumerate(tokens): if item.ttype in Keyword and item.value.lower() == 'limit': limit_pos = pos break limit = tokens[limit_pos + 2] if limit.ttype == sqlparse.tokens.Literal.Number.Integer: tokens[limit_pos + 2].value = new_limit elif limit.is_group: tokens[limit_pos + 2].value = ( '{}, {}'.format(next(limit.get_identifiers()), new_limit) ) str_res = '' for i in tokens: str_res += str(i.value) return str_res
Read a url or post parameter and use it in your SQL Lab query When in SQL Lab, it's possible to add arbitrary URL "query string" parameters, and use those in your SQL code. For instance you can alter your url and add `?foo=bar`, as in `{domain}/superset/sqllab?foo=bar`. Then if your query is something like SELECT * FROM foo = '{{ url_param('foo') }}', it will be parsed at runtime and replaced by the value in the URL. As you create a visualization form this SQL Lab query, you can pass parameters in the explore view as well as from the dashboard, and it should carry through to your queries. :param param: the parameter to lookup :type param: str :param default: the value to return in the absence of the parameter :type default: str def url_param(param, default=None): """Read a url or post parameter and use it in your SQL Lab query When in SQL Lab, it's possible to add arbitrary URL "query string" parameters, and use those in your SQL code. For instance you can alter your url and add `?foo=bar`, as in `{domain}/superset/sqllab?foo=bar`. Then if your query is something like SELECT * FROM foo = '{{ url_param('foo') }}', it will be parsed at runtime and replaced by the value in the URL. As you create a visualization form this SQL Lab query, you can pass parameters in the explore view as well as from the dashboard, and it should carry through to your queries. :param param: the parameter to lookup :type param: str :param default: the value to return in the absence of the parameter :type default: str """ if request.args.get(param): return request.args.get(param, default) # Supporting POST as well as get if request.form.get('form_data'): form_data = json.loads(request.form.get('form_data')) url_params = form_data.get('url_params') or {} return url_params.get(param, default) return default
Gets a values for a particular filter as a list This is useful if: - you want to use a filter box to filter a query where the name of filter box column doesn't match the one in the select statement - you want to have the ability for filter inside the main query for speed purposes This searches for "filters" and "extra_filters" in form_data for a match Usage example: SELECT action, count(*) as times FROM logs WHERE action in ( {{ "'" + "','".join(filter_values('action_type')) + "'" }} ) GROUP BY 1 :param column: column/filter name to lookup :type column: str :param default: default value to return if there's no matching columns :type default: str :return: returns a list of filter values :type: list def filter_values(column, default=None): """ Gets a values for a particular filter as a list This is useful if: - you want to use a filter box to filter a query where the name of filter box column doesn't match the one in the select statement - you want to have the ability for filter inside the main query for speed purposes This searches for "filters" and "extra_filters" in form_data for a match Usage example: SELECT action, count(*) as times FROM logs WHERE action in ( {{ "'" + "','".join(filter_values('action_type')) + "'" }} ) GROUP BY 1 :param column: column/filter name to lookup :type column: str :param default: default value to return if there's no matching columns :type default: str :return: returns a list of filter values :type: list """ form_data = json.loads(request.form.get('form_data', '{}')) return_val = [] for filter_type in ['filters', 'extra_filters']: if filter_type not in form_data: continue for f in form_data[filter_type]: if f['col'] == column: for v in f['val']: return_val.append(v) if return_val: return return_val if default: return [default] else: return []
Processes a sql template >>> sql = "SELECT '{{ datetime(2017, 1, 1).isoformat() }}'" >>> process_template(sql) "SELECT '2017-01-01T00:00:00'" def process_template(self, sql, **kwargs): """Processes a sql template >>> sql = "SELECT '{{ datetime(2017, 1, 1).isoformat() }}'" >>> process_template(sql) "SELECT '2017-01-01T00:00:00'" """ template = self.env.from_string(sql) kwargs.update(self.context) return template.render(kwargs)
Compatibility layer for handling of datasource info datasource_id & datasource_type used to be passed in the URL directory, now they should come as part of the form_data, This function allows supporting both without duplicating code def get_datasource_info(datasource_id, datasource_type, form_data): """Compatibility layer for handling of datasource info datasource_id & datasource_type used to be passed in the URL directory, now they should come as part of the form_data, This function allows supporting both without duplicating code""" datasource = form_data.get('datasource', '') if '__' in datasource: datasource_id, datasource_type = datasource.split('__') # The case where the datasource has been deleted datasource_id = None if datasource_id == 'None' else datasource_id if not datasource_id: raise Exception( 'The datasource associated with this chart no longer exists') datasource_id = int(datasource_id) return datasource_id, datasource_type
Protecting from has_access failing from missing perms/view def can_access(self, permission_name, view_name): """Protecting from has_access failing from missing perms/view""" user = g.user if user.is_anonymous: return self.is_item_public(permission_name, view_name) return self._has_view_access(user, permission_name, view_name)
Creates missing perms for datasources, schemas and metrics def create_missing_perms(self): """Creates missing perms for datasources, schemas and metrics""" from superset import db from superset.models import core as models logging.info( 'Fetching a set of all perms to lookup which ones are missing') all_pvs = set() for pv in self.get_session.query(self.permissionview_model).all(): if pv.permission and pv.view_menu: all_pvs.add((pv.permission.name, pv.view_menu.name)) def merge_pv(view_menu, perm): """Create permission view menu only if it doesn't exist""" if view_menu and perm and (view_menu, perm) not in all_pvs: self.merge_perm(view_menu, perm) logging.info('Creating missing datasource permissions.') datasources = ConnectorRegistry.get_all_datasources(db.session) for datasource in datasources: merge_pv('datasource_access', datasource.get_perm()) merge_pv('schema_access', datasource.schema_perm) logging.info('Creating missing database permissions.') databases = db.session.query(models.Database).all() for database in databases: merge_pv('database_access', database.perm) logging.info('Creating missing metrics permissions') metrics = [] for datasource_class in ConnectorRegistry.sources.values(): metrics += list(db.session.query(datasource_class.metric_class).all()) for metric in metrics: if metric.is_restricted: merge_pv('metric_access', metric.perm)
FAB leaves faulty permissions that need to be cleaned up def clean_perms(self): """FAB leaves faulty permissions that need to be cleaned up""" logging.info('Cleaning faulty perms') sesh = self.get_session pvms = ( sesh.query(ab_models.PermissionView) .filter(or_( ab_models.PermissionView.permission == None, # NOQA ab_models.PermissionView.view_menu == None, # NOQA )) ) deleted_count = pvms.delete() sesh.commit() if deleted_count: logging.info('Deleted {} faulty permissions'.format(deleted_count))
Inits the Superset application with security roles and such def sync_role_definitions(self): """Inits the Superset application with security roles and such""" from superset import conf logging.info('Syncing role definition') self.create_custom_permissions() # Creating default roles self.set_role('Admin', self.is_admin_pvm) self.set_role('Alpha', self.is_alpha_pvm) self.set_role('Gamma', self.is_gamma_pvm) self.set_role('granter', self.is_granter_pvm) self.set_role('sql_lab', self.is_sql_lab_pvm) if conf.get('PUBLIC_ROLE_LIKE_GAMMA', False): self.set_role('Public', self.is_gamma_pvm) self.create_missing_perms() # commit role and view menu updates self.get_session.commit() self.clean_perms()
Exports the supported import/export schema to a dictionary def export_schema_to_dict(back_references): """Exports the supported import/export schema to a dictionary""" databases = [Database.export_schema(recursive=True, include_parent_ref=back_references)] clusters = [DruidCluster.export_schema(recursive=True, include_parent_ref=back_references)] data = dict() if databases: data[DATABASES_KEY] = databases if clusters: data[DRUID_CLUSTERS_KEY] = clusters return data
Exports databases and druid clusters to a dictionary def export_to_dict(session, recursive, back_references, include_defaults): """Exports databases and druid clusters to a dictionary""" logging.info('Starting export') dbs = session.query(Database) databases = [database.export_to_dict(recursive=recursive, include_parent_ref=back_references, include_defaults=include_defaults) for database in dbs] logging.info('Exported %d %s', len(databases), DATABASES_KEY) cls = session.query(DruidCluster) clusters = [cluster.export_to_dict(recursive=recursive, include_parent_ref=back_references, include_defaults=include_defaults) for cluster in cls] logging.info('Exported %d %s', len(clusters), DRUID_CLUSTERS_KEY) data = dict() if databases: data[DATABASES_KEY] = databases if clusters: data[DRUID_CLUSTERS_KEY] = clusters return data
Imports databases and druid clusters from dictionary def import_from_dict(session, data, sync=[]): """Imports databases and druid clusters from dictionary""" if isinstance(data, dict): logging.info('Importing %d %s', len(data.get(DATABASES_KEY, [])), DATABASES_KEY) for database in data.get(DATABASES_KEY, []): Database.import_from_dict(session, database, sync=sync) logging.info('Importing %d %s', len(data.get(DRUID_CLUSTERS_KEY, [])), DRUID_CLUSTERS_KEY) for datasource in data.get(DRUID_CLUSTERS_KEY, []): DruidCluster.import_from_dict(session, datasource, sync=sync) session.commit() else: logging.info('Supplied object is not a dictionary.')
Takes a query_obj constructed in the client and returns payload data response for the given query_obj. params: query_context: json_blob def query(self): """ Takes a query_obj constructed in the client and returns payload data response for the given query_obj. params: query_context: json_blob """ query_context = QueryContext(**json.loads(request.form.get('query_context'))) security_manager.assert_datasource_permission(query_context.datasource) payload_json = query_context.get_payload() return json.dumps( payload_json, default=utils.json_int_dttm_ser, ignore_nan=True, )
Get the formdata stored in the database for existing slice. params: slice_id: integer def query_form_data(self): """ Get the formdata stored in the database for existing slice. params: slice_id: integer """ form_data = {} slice_id = request.args.get('slice_id') if slice_id: slc = db.session.query(models.Slice).filter_by(id=slice_id).one_or_none() if slc: form_data = slc.form_data.copy() update_time_range(form_data) return json.dumps(form_data)
Loads 2 css templates to demonstrate the feature def load_css_templates(): """Loads 2 css templates to demonstrate the feature""" print('Creating default CSS templates') obj = db.session.query(CssTemplate).filter_by(template_name='Flat').first() if not obj: obj = CssTemplate(template_name='Flat') css = textwrap.dedent("""\ .gridster div.widget { transition: background-color 0.5s ease; background-color: #FAFAFA; border: 1px solid #CCC; box-shadow: none; border-radius: 0px; } .gridster div.widget:hover { border: 1px solid #000; background-color: #EAEAEA; } .navbar { transition: opacity 0.5s ease; opacity: 0.05; } .navbar:hover { opacity: 1; } .chart-header .header{ font-weight: normal; font-size: 12px; } /* var bnbColors = [ //rausch hackb kazan babu lima beach tirol '#ff5a5f', '#7b0051', '#007A87', '#00d1c1', '#8ce071', '#ffb400', '#b4a76c', '#ff8083', '#cc0086', '#00a1b3', '#00ffeb', '#bbedab', '#ffd266', '#cbc29a', '#ff3339', '#ff1ab1', '#005c66', '#00b3a5', '#55d12e', '#b37e00', '#988b4e', ]; */ """) obj.css = css db.session.merge(obj) db.session.commit() obj = ( db.session.query(CssTemplate).filter_by(template_name='Courier Black').first()) if not obj: obj = CssTemplate(template_name='Courier Black') css = textwrap.dedent("""\ .gridster div.widget { transition: background-color 0.5s ease; background-color: #EEE; border: 2px solid #444; border-radius: 15px; box-shadow: none; } h2 { color: white; font-size: 52px; } .navbar { box-shadow: none; } .gridster div.widget:hover { border: 2px solid #000; background-color: #EAEAEA; } .navbar { transition: opacity 0.5s ease; opacity: 0.05; } .navbar:hover { opacity: 1; } .chart-header .header{ font-weight: normal; font-size: 12px; } .nvd3 text { font-size: 12px; font-family: inherit; } body{ background: #000; font-family: Courier, Monaco, monospace;; } /* var bnbColors = [ //rausch hackb kazan babu lima beach tirol '#ff5a5f', '#7b0051', '#007A87', '#00d1c1', '#8ce071', '#ffb400', '#b4a76c', '#ff8083', '#cc0086', '#00a1b3', '#00ffeb', '#bbedab', '#ffd266', '#cbc29a', '#ff3339', '#ff1ab1', '#005c66', '#00b3a5', '#55d12e', '#b37e00', '#988b4e', ]; */ """) obj.css = css db.session.merge(obj) db.session.commit()
Get a mapping of foreign name to the local name of foreign keys def _parent_foreign_key_mappings(cls): """Get a mapping of foreign name to the local name of foreign keys""" parent_rel = cls.__mapper__.relationships.get(cls.export_parent) if parent_rel: return {l.name: r.name for (l, r) in parent_rel.local_remote_pairs} return {}
Get all (single column and multi column) unique constraints def _unique_constrains(cls): """Get all (single column and multi column) unique constraints""" unique = [{c.name for c in u.columns} for u in cls.__table_args__ if isinstance(u, UniqueConstraint)] unique.extend({c.name} for c in cls.__table__.columns if c.unique) return unique
Export schema as a dictionary def export_schema(cls, recursive=True, include_parent_ref=False): """Export schema as a dictionary""" parent_excludes = {} if not include_parent_ref: parent_ref = cls.__mapper__.relationships.get(cls.export_parent) if parent_ref: parent_excludes = {c.name for c in parent_ref.local_columns} def formatter(c): return ('{0} Default ({1})'.format( str(c.type), c.default.arg) if c.default else str(c.type)) schema = {c.name: formatter(c) for c in cls.__table__.columns if (c.name in cls.export_fields and c.name not in parent_excludes)} if recursive: for c in cls.export_children: child_class = cls.__mapper__.relationships[c].argument.class_ schema[c] = [child_class.export_schema(recursive=recursive, include_parent_ref=include_parent_ref)] return schema
Import obj from a dictionary def import_from_dict(cls, session, dict_rep, parent=None, recursive=True, sync=[]): """Import obj from a dictionary""" parent_refs = cls._parent_foreign_key_mappings() export_fields = set(cls.export_fields) | set(parent_refs.keys()) new_children = {c: dict_rep.get(c) for c in cls.export_children if c in dict_rep} unique_constrains = cls._unique_constrains() filters = [] # Using these filters to check if obj already exists # Remove fields that should not get imported for k in list(dict_rep): if k not in export_fields: del dict_rep[k] if not parent: if cls.export_parent: for p in parent_refs.keys(): if p not in dict_rep: raise RuntimeError( '{0}: Missing field {1}'.format(cls.__name__, p)) else: # Set foreign keys to parent obj for k, v in parent_refs.items(): dict_rep[k] = getattr(parent, v) # Add filter for parent obj filters.extend([getattr(cls, k) == dict_rep.get(k) for k in parent_refs.keys()]) # Add filter for unique constraints ucs = [and_(*[getattr(cls, k) == dict_rep.get(k) for k in cs if dict_rep.get(k) is not None]) for cs in unique_constrains] filters.append(or_(*ucs)) # Check if object already exists in DB, break if more than one is found try: obj_query = session.query(cls).filter(and_(*filters)) obj = obj_query.one_or_none() except MultipleResultsFound as e: logging.error('Error importing %s \n %s \n %s', cls.__name__, str(obj_query), yaml.safe_dump(dict_rep)) raise e if not obj: is_new_obj = True # Create new DB object obj = cls(**dict_rep) logging.info('Importing new %s %s', obj.__tablename__, str(obj)) if cls.export_parent and parent: setattr(obj, cls.export_parent, parent) session.add(obj) else: is_new_obj = False logging.info('Updating %s %s', obj.__tablename__, str(obj)) # Update columns for k, v in dict_rep.items(): setattr(obj, k, v) # Recursively create children if recursive: for c in cls.export_children: child_class = cls.__mapper__.relationships[c].argument.class_ added = [] for c_obj in new_children.get(c, []): added.append(child_class.import_from_dict(session=session, dict_rep=c_obj, parent=obj, sync=sync)) # If children should get synced, delete the ones that did not # get updated. if c in sync and not is_new_obj: back_refs = child_class._parent_foreign_key_mappings() delete_filters = [getattr(child_class, k) == getattr(obj, back_refs.get(k)) for k in back_refs.keys()] to_delete = set(session.query(child_class).filter( and_(*delete_filters))).difference(set(added)) for o in to_delete: logging.info('Deleting %s %s', c, str(obj)) session.delete(o) return obj
Export obj to dictionary def export_to_dict(self, recursive=True, include_parent_ref=False, include_defaults=False): """Export obj to dictionary""" cls = self.__class__ parent_excludes = {} if recursive and not include_parent_ref: parent_ref = cls.__mapper__.relationships.get(cls.export_parent) if parent_ref: parent_excludes = {c.name for c in parent_ref.local_columns} dict_rep = {c.name: getattr(self, c.name) for c in cls.__table__.columns if (c.name in self.export_fields and c.name not in parent_excludes and (include_defaults or ( getattr(self, c.name) is not None and (not c.default or getattr(self, c.name) != c.default.arg)))) } if recursive: for c in self.export_children: # sorting to make lists of children stable dict_rep[c] = sorted( [ child.export_to_dict( recursive=recursive, include_parent_ref=include_parent_ref, include_defaults=include_defaults, ) for child in getattr(self, c) ], key=lambda k: sorted(k.items())) return dict_rep
Overrides the plain fields of the dashboard. def override(self, obj): """Overrides the plain fields of the dashboard.""" for field in obj.__class__.export_fields: setattr(self, field, getattr(obj, field))
Move since and until to time_range. def update_time_range(form_data): """Move since and until to time_range.""" if 'since' in form_data or 'until' in form_data: form_data['time_range'] = '{} : {}'.format( form_data.pop('since', '') or '', form_data.pop('until', '') or '', )