text
stringlengths
81
112k
Loading birth name dataset from a zip file in the repo def load_birth_names(): """Loading birth name dataset from a zip file in the repo""" data = get_example_data('birth_names.json.gz') pdf = pd.read_json(data) pdf.ds = pd.to_datetime(pdf.ds, unit='ms') pdf.to_sql( 'birth_names', db.engine, if_exists='replace', chunksize=500, dtype={ 'ds': DateTime, 'gender': String(16), 'state': String(10), 'name': String(255), }, index=False) print('Done loading table!') print('-' * 80) print('Creating table [birth_names] reference') obj = db.session.query(TBL).filter_by(table_name='birth_names').first() if not obj: obj = TBL(table_name='birth_names') obj.main_dttm_col = 'ds' obj.database = get_or_create_main_db() obj.filter_select_enabled = True if not any(col.column_name == 'num_california' for col in obj.columns): obj.columns.append(TableColumn( column_name='num_california', expression="CASE WHEN state = 'CA' THEN num ELSE 0 END", )) if not any(col.metric_name == 'sum__num' for col in obj.metrics): obj.metrics.append(SqlMetric( metric_name='sum__num', expression='SUM(num)', )) db.session.merge(obj) db.session.commit() obj.fetch_metadata() tbl = obj defaults = { 'compare_lag': '10', 'compare_suffix': 'o10Y', 'limit': '25', 'granularity_sqla': 'ds', 'groupby': [], 'metric': 'sum__num', 'metrics': ['sum__num'], 'row_limit': config.get('ROW_LIMIT'), 'since': '100 years ago', 'until': 'now', 'viz_type': 'table', 'where': '', 'markup_type': 'markdown', } admin = security_manager.find_user('admin') print('Creating some slices') slices = [ Slice( slice_name='Girls', viz_type='table', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, groupby=['name'], filters=[{ 'col': 'gender', 'op': 'in', 'val': ['girl'], }], row_limit=50, timeseries_limit_metric='sum__num')), Slice( slice_name='Boys', viz_type='table', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, groupby=['name'], filters=[{ 'col': 'gender', 'op': 'in', 'val': ['boy'], }], row_limit=50)), Slice( slice_name='Participants', viz_type='big_number', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='big_number', granularity_sqla='ds', compare_lag='5', compare_suffix='over 5Y')), Slice( slice_name='Genders', viz_type='pie', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='pie', groupby=['gender'])), Slice( slice_name='Genders by State', viz_type='dist_bar', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, adhoc_filters=[ { 'clause': 'WHERE', 'expressionType': 'SIMPLE', 'filterOptionName': '2745eae5', 'comparator': ['other'], 'operator': 'not in', 'subject': 'state', }, ], viz_type='dist_bar', metrics=[ { 'expressionType': 'SIMPLE', 'column': { 'column_name': 'sum_boys', 'type': 'BIGINT(20)', }, 'aggregate': 'SUM', 'label': 'Boys', 'optionName': 'metric_11', }, { 'expressionType': 'SIMPLE', 'column': { 'column_name': 'sum_girls', 'type': 'BIGINT(20)', }, 'aggregate': 'SUM', 'label': 'Girls', 'optionName': 'metric_12', }, ], groupby=['state'])), Slice( slice_name='Trends', viz_type='line', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='line', groupby=['name'], granularity_sqla='ds', rich_tooltip=True, show_legend=True)), Slice( slice_name='Average and Sum Trends', viz_type='dual_line', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='dual_line', metric={ 'expressionType': 'SIMPLE', 'column': { 'column_name': 'num', 'type': 'BIGINT(20)', }, 'aggregate': 'AVG', 'label': 'AVG(num)', 'optionName': 'metric_vgops097wej_g8uff99zhk7', }, metric_2='sum__num', granularity_sqla='ds')), Slice( slice_name='Title', viz_type='markup', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='markup', markup_type='html', code="""\ <div style='text-align:center'> <h1>Birth Names Dashboard</h1> <p> The source dataset came from <a href='https://github.com/hadley/babynames' target='_blank'>[here]</a> </p> <img src='/static/assets/images/babytux.jpg'> </div> """)), Slice( slice_name='Name Cloud', viz_type='word_cloud', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='word_cloud', size_from='10', series='name', size_to='70', rotation='square', limit='100')), Slice( slice_name='Pivot Table', viz_type='pivot_table', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='pivot_table', metrics=['sum__num'], groupby=['name'], columns=['state'])), Slice( slice_name='Number of Girls', viz_type='big_number_total', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='big_number_total', granularity_sqla='ds', filters=[{ 'col': 'gender', 'op': 'in', 'val': ['girl'], }], subheader='total female participants')), Slice( slice_name='Number of California Births', viz_type='big_number_total', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, metric={ 'expressionType': 'SIMPLE', 'column': { 'column_name': 'num_california', 'expression': "CASE WHEN state = 'CA' THEN num ELSE 0 END", }, 'aggregate': 'SUM', 'label': 'SUM(num_california)', }, viz_type='big_number_total', granularity_sqla='ds')), Slice( slice_name='Top 10 California Names Timeseries', viz_type='line', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, metrics=[{ 'expressionType': 'SIMPLE', 'column': { 'column_name': 'num_california', 'expression': "CASE WHEN state = 'CA' THEN num ELSE 0 END", }, 'aggregate': 'SUM', 'label': 'SUM(num_california)', }], viz_type='line', granularity_sqla='ds', groupby=['name'], timeseries_limit_metric={ 'expressionType': 'SIMPLE', 'column': { 'column_name': 'num_california', 'expression': "CASE WHEN state = 'CA' THEN num ELSE 0 END", }, 'aggregate': 'SUM', 'label': 'SUM(num_california)', }, limit='10')), Slice( slice_name='Names Sorted by Num in California', viz_type='table', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, groupby=['name'], row_limit=50, timeseries_limit_metric={ 'expressionType': 'SIMPLE', 'column': { 'column_name': 'num_california', 'expression': "CASE WHEN state = 'CA' THEN num ELSE 0 END", }, 'aggregate': 'SUM', 'label': 'SUM(num_california)', })), Slice( slice_name='Num Births Trend', viz_type='line', datasource_type='table', datasource_id=tbl.id, params=get_slice_json( defaults, viz_type='line')), Slice( slice_name='Daily Totals', viz_type='table', datasource_type='table', datasource_id=tbl.id, created_by=admin, params=get_slice_json( defaults, groupby=['ds'], since='40 years ago', until='now', viz_type='table')), ] for slc in slices: merge_slice(slc) print('Creating a dashboard') dash = db.session.query(Dash).filter_by(dashboard_title='Births').first() if not dash: dash = Dash() js = textwrap.dedent("""\ { "CHART-0dd270f0": { "meta": { "chartId": 51, "width": 2, "height": 50 }, "type": "CHART", "id": "CHART-0dd270f0", "children": [] }, "CHART-a3c21bcc": { "meta": { "chartId": 52, "width": 2, "height": 50 }, "type": "CHART", "id": "CHART-a3c21bcc", "children": [] }, "CHART-976960a5": { "meta": { "chartId": 53, "width": 2, "height": 25 }, "type": "CHART", "id": "CHART-976960a5", "children": [] }, "CHART-58575537": { "meta": { "chartId": 54, "width": 2, "height": 25 }, "type": "CHART", "id": "CHART-58575537", "children": [] }, "CHART-e9cd8f0b": { "meta": { "chartId": 55, "width": 8, "height": 38 }, "type": "CHART", "id": "CHART-e9cd8f0b", "children": [] }, "CHART-e440d205": { "meta": { "chartId": 56, "width": 8, "height": 50 }, "type": "CHART", "id": "CHART-e440d205", "children": [] }, "CHART-59444e0b": { "meta": { "chartId": 57, "width": 3, "height": 38 }, "type": "CHART", "id": "CHART-59444e0b", "children": [] }, "CHART-e2cb4997": { "meta": { "chartId": 59, "width": 4, "height": 50 }, "type": "CHART", "id": "CHART-e2cb4997", "children": [] }, "CHART-e8774b49": { "meta": { "chartId": 60, "width": 12, "height": 50 }, "type": "CHART", "id": "CHART-e8774b49", "children": [] }, "CHART-985bfd1e": { "meta": { "chartId": 61, "width": 4, "height": 50 }, "type": "CHART", "id": "CHART-985bfd1e", "children": [] }, "CHART-17f13246": { "meta": { "chartId": 62, "width": 4, "height": 50 }, "type": "CHART", "id": "CHART-17f13246", "children": [] }, "CHART-729324f6": { "meta": { "chartId": 63, "width": 4, "height": 50 }, "type": "CHART", "id": "CHART-729324f6", "children": [] }, "COLUMN-25a865d6": { "meta": { "width": 4, "background": "BACKGROUND_TRANSPARENT" }, "type": "COLUMN", "id": "COLUMN-25a865d6", "children": [ "ROW-cc97c6ac", "CHART-e2cb4997" ] }, "COLUMN-4557b6ba": { "meta": { "width": 8, "background": "BACKGROUND_TRANSPARENT" }, "type": "COLUMN", "id": "COLUMN-4557b6ba", "children": [ "ROW-d2e78e59", "CHART-e9cd8f0b" ] }, "GRID_ID": { "type": "GRID", "id": "GRID_ID", "children": [ "ROW-8515ace3", "ROW-1890385f", "ROW-f0b64094", "ROW-be9526b8" ] }, "HEADER_ID": { "meta": { "text": "Births" }, "type": "HEADER", "id": "HEADER_ID" }, "MARKDOWN-00178c27": { "meta": { "width": 5, "code": "<div style=\\"text-align:center\\">\\n <h1>Birth Names Dashboard</h1>\\n <p>\\n The source dataset came from\\n <a href=\\"https://github.com/hadley/babynames\\" target=\\"_blank\\">[here]</a>\\n </p>\\n <img src=\\"/static/assets/images/babytux.jpg\\">\\n</div>\\n", "height": 38 }, "type": "MARKDOWN", "id": "MARKDOWN-00178c27", "children": [] }, "ROOT_ID": { "type": "ROOT", "id": "ROOT_ID", "children": [ "GRID_ID" ] }, "ROW-1890385f": { "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW", "id": "ROW-1890385f", "children": [ "CHART-e440d205", "CHART-0dd270f0", "CHART-a3c21bcc" ] }, "ROW-8515ace3": { "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW", "id": "ROW-8515ace3", "children": [ "COLUMN-25a865d6", "COLUMN-4557b6ba" ] }, "ROW-be9526b8": { "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW", "id": "ROW-be9526b8", "children": [ "CHART-985bfd1e", "CHART-17f13246", "CHART-729324f6" ] }, "ROW-cc97c6ac": { "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW", "id": "ROW-cc97c6ac", "children": [ "CHART-976960a5", "CHART-58575537" ] }, "ROW-d2e78e59": { "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW", "id": "ROW-d2e78e59", "children": [ "MARKDOWN-00178c27", "CHART-59444e0b" ] }, "ROW-f0b64094": { "meta": { "background": "BACKGROUND_TRANSPARENT" }, "type": "ROW", "id": "ROW-f0b64094", "children": [ "CHART-e8774b49" ] }, "DASHBOARD_VERSION_KEY": "v2" } """) pos = json.loads(js) # dashboard v2 doesn't allow add markup slice dash.slices = [slc for slc in slices if slc.viz_type != 'markup'] update_slice_ids(pos, dash.slices) dash.dashboard_title = 'Births' dash.position_json = json.dumps(pos, indent=4) dash.slug = 'births' db.session.merge(dash) db.session.commit()
endpoint that refreshes druid datasources metadata def refresh_datasources(self, refreshAll=True): """endpoint that refreshes druid datasources metadata""" session = db.session() DruidCluster = ConnectorRegistry.sources['druid'].cluster_class for cluster in session.query(DruidCluster).all(): cluster_name = cluster.cluster_name valid_cluster = True try: cluster.refresh_datasources(refreshAll=refreshAll) except Exception as e: valid_cluster = False flash( "Error while processing cluster '{}'\n{}".format( cluster_name, utils.error_msg_from_exception(e)), 'danger') logging.exception(e) pass if valid_cluster: cluster.metadata_last_refreshed = datetime.now() flash( _('Refreshed metadata from cluster [{}]').format( cluster.cluster_name), 'info') session.commit() return redirect('/druiddatasourcemodelview/list/')
converts a positive integer into a (reversed) linked list. for example: give 112 result 2 -> 1 -> 1 def convert_to_list(number: int) -> Node: """ converts a positive integer into a (reversed) linked list. for example: give 112 result 2 -> 1 -> 1 """ if number >= 0: head = Node(0) current = head remainder = number % 10 quotient = number // 10 while quotient != 0: current.next = Node(remainder) current = current.next remainder = quotient % 10 quotient //= 10 current.next = Node(remainder) return head.next else: print("number must be positive!")
converts the non-negative number list into a string. def convert_to_str(l: Node) -> str: """ converts the non-negative number list into a string. """ result = "" while l: result += str(l.val) l = l.next return result
:type root: TreeNode :rtype: int def longest_consecutive(root): """ :type root: TreeNode :rtype: int """ if root is None: return 0 max_len = 0 dfs(root, 0, root.val, max_len) return max_len
:param array: List[int] :return: Set[ Tuple[int, int, int] ] def three_sum(array): """ :param array: List[int] :return: Set[ Tuple[int, int, int] ] """ res = set() array.sort() for i in range(len(array) - 2): if i > 0 and array[i] == array[i - 1]: continue l, r = i + 1, len(array) - 1 while l < r: s = array[i] + array[l] + array[r] if s > 0: r -= 1 elif s < 0: l += 1 else: # found three sum res.add((array[i], array[l], array[r])) # remove duplicates while l < r and array[l] == array[l + 1]: l += 1 while l < r and array[r] == array[r - 1]: r -= 1 l += 1 r -= 1 return res
Time complexity is the same as DFS, which is O(V + E) Space complexity: O(V) def top_sort_recursive(graph): """ Time complexity is the same as DFS, which is O(V + E) Space complexity: O(V) """ order, enter, state = [], set(graph), {} def dfs(node): state[node] = GRAY #print(node) for k in graph.get(node, ()): sk = state.get(k, None) if sk == GRAY: raise ValueError("cycle") if sk == BLACK: continue enter.discard(k) dfs(k) order.append(node) state[node] = BLACK while enter: dfs(enter.pop()) return order
Time complexity is the same as DFS, which is O(V + E) Space complexity: O(V) def top_sort(graph): """ Time complexity is the same as DFS, which is O(V + E) Space complexity: O(V) """ order, enter, state = [], set(graph), {} def is_ready(node): lst = graph.get(node, ()) if len(lst) == 0: return True for k in lst: sk = state.get(k, None) if sk == GRAY: raise ValueError("cycle") if sk != BLACK: return False return True while enter: node = enter.pop() stack = [] while True: state[node] = GRAY stack.append(node) for k in graph.get(node, ()): sk = state.get(k, None) if sk == GRAY: raise ValueError("cycle") if sk == BLACK: continue enter.discard(k) stack.append(k) while stack and is_ready(stack[-1]): node = stack.pop() order.append(node) state[node] = BLACK if len(stack) == 0: break node = stack.pop() return order
:type nums: List[int] :rtype: int def max_product(nums): """ :type nums: List[int] :rtype: int """ lmin = lmax = gmax = nums[0] for i in range(len(nums)): t1 = nums[i] * lmax t2 = nums[i] * lmin lmax = max(max(t1, t2), nums[i]) lmin = min(min(t1, t2), nums[i]) gmax = max(gmax, lmax)
arr is list of positive/negative numbers def subarray_with_max_product(arr): ''' arr is list of positive/negative numbers ''' l = len(arr) product_so_far = max_product_end = 1 max_start_i = 0 so_far_start_i = so_far_end_i = 0 all_negative_flag = True for i in range(l): max_product_end *= arr[i] if arr[i] > 0: all_negative_flag = False if max_product_end <= 0: max_product_end = arr[i] max_start_i = i if product_so_far <= max_product_end: product_so_far = max_product_end so_far_end_i = i so_far_start_i = max_start_i if all_negative_flag: print("max_product_so_far: %s, %s" % (reduce(lambda x, y: x * y, arr), arr)) else: print("max_product_so_far: %s, %s" % (product_so_far, arr[so_far_start_i:so_far_end_i + 1]))
:type words: list :type max_width: int :rtype: list def text_justification(words, max_width): ''' :type words: list :type max_width: int :rtype: list ''' ret = [] # return value row_len = 0 # current length of strs in a row row_words = [] # current words in a row index = 0 # the index of current word in words is_first_word = True # is current word the first in a row while index < len(words): while row_len <= max_width and index < len(words): if len(words[index]) > max_width: raise ValueError("there exists word whose length is larger than max_width") tmp = row_len row_words.append(words[index]) tmp += len(words[index]) if not is_first_word: tmp += 1 # except for the first word, each word should have at least a ' ' before it. if tmp > max_width: row_words.pop() break row_len = tmp index += 1 is_first_word = False # here we have already got a row of str , then we should supplement enough ' ' to make sure the length is max_width. row = "" # if the row is the last if index == len(words): for word in row_words: row += (word + ' ') row = row[:-1] row += ' ' * (max_width - len(row)) # not the last row and more than one word elif len(row_words) != 1: space_num = max_width - row_len space_num_of_each_interval = space_num // (len(row_words) - 1) space_num_rest = space_num - space_num_of_each_interval * (len(row_words) - 1) for j in range(len(row_words)): row += row_words[j] if j != len(row_words) - 1: row += ' ' * (1 + space_num_of_each_interval) if space_num_rest > 0: row += ' ' space_num_rest -= 1 # row with only one word else: row += row_words[0] row += ' ' * (max_width - len(row)) ret.append(row) # after a row , reset those value row_len = 0 row_words = [] is_first_word = True return ret
Insertion Sort Complexity: O(n^2) def insertion_sort(arr, simulation=False): """ Insertion Sort Complexity: O(n^2) """ iteration = 0 if simulation: print("iteration",iteration,":",*arr) for i in range(len(arr)): cursor = arr[i] pos = i while pos > 0 and arr[pos - 1] > cursor: # Swap the number down the list arr[pos] = arr[pos - 1] pos = pos - 1 # Break and do the final swap arr[pos] = cursor if simulation: iteration = iteration + 1 print("iteration",iteration,":",*arr) return arr
cycle_sort This is based on the idea that the permutations to be sorted can be decomposed into cycles, and the results can be individually sorted by cycling. reference: https://en.wikipedia.org/wiki/Cycle_sort Average time complexity : O(N^2) Worst case time complexity : O(N^2) def cycle_sort(arr): """ cycle_sort This is based on the idea that the permutations to be sorted can be decomposed into cycles, and the results can be individually sorted by cycling. reference: https://en.wikipedia.org/wiki/Cycle_sort Average time complexity : O(N^2) Worst case time complexity : O(N^2) """ len_arr = len(arr) # Finding cycle to rotate. for cur in range(len_arr - 1): item = arr[cur] # Finding an indx to put items in. index = cur for i in range(cur + 1, len_arr): if arr[i] < item: index += 1 # Case of there is not a cycle if index == cur: continue # Putting the item immediately right after the duplicate item or on the right. while item == arr[index]: index += 1 arr[index], item = item, arr[index] # Rotating the remaining cycle. while index != cur: # Finding where to put the item. index = cur for i in range(cur + 1, len_arr): if arr[i] < item: index += 1 # After item is duplicated, put it in place or put it there. while item == arr[index]: index += 1 arr[index], item = item, arr[index] return arr
Cocktail_shaker_sort Sorting a given array mutation of bubble sort reference: https://en.wikipedia.org/wiki/Cocktail_shaker_sort Worst-case performance: O(N^2) def cocktail_shaker_sort(arr): """ Cocktail_shaker_sort Sorting a given array mutation of bubble sort reference: https://en.wikipedia.org/wiki/Cocktail_shaker_sort Worst-case performance: O(N^2) """ def swap(i, j): arr[i], arr[j] = arr[j], arr[i] n = len(arr) swapped = True while swapped: swapped = False for i in range(1, n): if arr[i - 1] > arr[i]: swap(i - 1, i) swapped = True if swapped == False: return arr swapped = False for i in range(n-1,0,-1): if arr[i - 1] > arr[i]: swap(i - 1, i) swapped = True return arr
:type people: List[List[int]] :rtype: List[List[int]] def reconstruct_queue(people): """ :type people: List[List[int]] :rtype: List[List[int]] """ queue = [] people.sort(key=lambda x: (-x[0], x[1])) for h, k in people: queue.insert(k, [h, k]) return queue
:type root: TreeNode :rtype: int def min_depth(self, root): """ :type root: TreeNode :rtype: int """ if root is None: return 0 if root.left is not None or root.right is not None: return max(self.minDepth(root.left), self.minDepth(root.right))+1 return min(self.minDepth(root.left), self.minDepth(root.right)) + 1
:type s: str :type t: str :rtype: bool def is_one_edit(s, t): """ :type s: str :type t: str :rtype: bool """ if len(s) > len(t): return is_one_edit(t, s) if len(t) - len(s) > 1 or t == s: return False for i in range(len(s)): if s[i] != t[i]: return s[i+1:] == t[i+1:] or s[i:] == t[i+1:] return True
Shell Sort Complexity: O(n^2) def shell_sort(arr): ''' Shell Sort Complexity: O(n^2) ''' n = len(arr) # Initialize size of the gap gap = n//2 while gap > 0: y_index = gap while y_index < len(arr): y = arr[y_index] x_index = y_index - gap while x_index >= 0 and y < arr[x_index]: arr[x_index + gap] = arr[x_index] x_index = x_index - gap arr[x_index + gap] = y y_index = y_index + 1 gap = gap//2 return arr
Return prefix common of 2 strings def common_prefix(s1, s2): "Return prefix common of 2 strings" if not s1 or not s2: return "" k = 0 while s1[k] == s2[k]: k = k + 1 if k >= len(s1) or k >= len(s2): return s1[0:k] return s1[0:k]
Euler's totient function or Phi function. Time Complexity: O(sqrt(n)). def euler_totient(n): """Euler's totient function or Phi function. Time Complexity: O(sqrt(n)).""" result = n; for i in range(2, int(n ** 0.5) + 1): if n % i == 0: while n % i == 0: n //= i result -= result // i if n > 1: result -= result // n; return result;
This function builds up a dictionary where the keys are the values of the list, and the values are the positions at which these values occur in the list. We then iterate over the dict and if there is more than one key with an odd number of occurrences, bail out and return False. Otherwise, we want to ensure that the positions of occurrence sum to the value of the length of the list - 1, working from the outside of the list inward. For example: Input: 1 -> 1 -> 2 -> 3 -> 2 -> 1 -> 1 d = {1: [0,1,5,6], 2: [2,4], 3: [3]} '3' is the middle outlier, 2+4=6, 0+6=6 and 5+1=6 so we have a palindrome. def is_palindrome_dict(head): """ This function builds up a dictionary where the keys are the values of the list, and the values are the positions at which these values occur in the list. We then iterate over the dict and if there is more than one key with an odd number of occurrences, bail out and return False. Otherwise, we want to ensure that the positions of occurrence sum to the value of the length of the list - 1, working from the outside of the list inward. For example: Input: 1 -> 1 -> 2 -> 3 -> 2 -> 1 -> 1 d = {1: [0,1,5,6], 2: [2,4], 3: [3]} '3' is the middle outlier, 2+4=6, 0+6=6 and 5+1=6 so we have a palindrome. """ if not head or not head.next: return True d = {} pos = 0 while head: if head.val in d.keys(): d[head.val].append(pos) else: d[head.val] = [pos] head = head.next pos += 1 checksum = pos - 1 middle = 0 for v in d.values(): if len(v) % 2 != 0: middle += 1 else: step = 0 for i in range(0, len(v)): if v[i] + v[len(v) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
[summary] This algorithm computes the n-th fibbonacci number very quick. approximate O(n) The algorithm use dynamic programming. Arguments: n {[int]} -- [description] Returns: [int] -- [description] def fib_list(n): """[summary] This algorithm computes the n-th fibbonacci number very quick. approximate O(n) The algorithm use dynamic programming. Arguments: n {[int]} -- [description] Returns: [int] -- [description] """ # precondition assert n >= 0, 'n must be a positive integer' list_results = [0, 1] for i in range(2, n+1): list_results.append(list_results[i-1] + list_results[i-2]) return list_results[n]
[summary] Works iterative approximate O(n) Arguments: n {[int]} -- [description] Returns: [int] -- [description] def fib_iter(n): """[summary] Works iterative approximate O(n) Arguments: n {[int]} -- [description] Returns: [int] -- [description] """ # precondition assert n >= 0, 'n must be positive integer' fib_1 = 0 fib_2 = 1 sum = 0 if n <= 1: return n for _ in range(n-1): sum = fib_1 + fib_2 fib_1 = fib_2 fib_2 = sum return sum
:param nums: List[int] :return: Set[tuple] def subsets(nums): """ :param nums: List[int] :return: Set[tuple] """ n = len(nums) total = 1 << n res = set() for i in range(total): subset = tuple(num for j, num in enumerate(nums) if i & 1 << j) res.add(subset) return res
The length of longest common subsequence among the two given strings s1 and s2 def lcs(s1, s2, i, j): """ The length of longest common subsequence among the two given strings s1 and s2 """ if i == 0 or j == 0: return 0 elif s1[i - 1] == s2[j - 1]: return 1 + lcs(s1, s2, i - 1, j - 1) else: return max(lcs(s1, s2, i - 1, j), lcs(s1, s2, i, j - 1))
:type root: TreeNode :type p: TreeNode :type q: TreeNode :rtype: TreeNode def lca(root, p, q): """ :type root: TreeNode :type p: TreeNode :type q: TreeNode :rtype: TreeNode """ if root is None or root is p or root is q: return root left = lca(root.left, p, q) right = lca(root.right, p, q) if left is not None and right is not None: return root return left if left else right
:type root: Node :type p: Node :type q: Node :rtype: Node def lowest_common_ancestor(root, p, q): """ :type root: Node :type p: Node :type q: Node :rtype: Node """ while root: if p.val > root.val < q.val: root = root.right elif p.val < root.val > q.val: root = root.left else: return root
:type n: int :rtype: int def climb_stairs(n): """ :type n: int :rtype: int """ arr = [1, 1] for _ in range(1, n): arr.append(arr[-1] + arr[-2]) return arr[-1]
find the nth digit of given number. 1. find the length of the number where the nth digit is from. 2. find the actual number where the nth digit is from 3. find the nth digit and return def find_nth_digit(n): """find the nth digit of given number. 1. find the length of the number where the nth digit is from. 2. find the actual number where the nth digit is from 3. find the nth digit and return """ length = 1 count = 9 start = 1 while n > length * count: n -= length * count length += 1 count *= 10 start *= 10 start += (n-1) / length s = str(start) return int(s[(n-1) % length])
Return the 'hailstone sequence' from n to 1 n: The starting point of the hailstone sequence def hailstone(n): """Return the 'hailstone sequence' from n to 1 n: The starting point of the hailstone sequence """ sequence = [n] while n > 1: if n%2 != 0: n = 3*n + 1 else: n = int(n/2) sequence.append(n) return sequence
:type s: str :type word_dict: Set[str] :rtype: bool def word_break(s, word_dict): """ :type s: str :type word_dict: Set[str] :rtype: bool """ dp = [False] * (len(s)+1) dp[0] = True for i in range(1, len(s)+1): for j in range(0, i): if dp[j] and s[j:i] in word_dict: dp[i] = True break return dp[-1]
Return True if n is a prime number Else return False. def prime_check(n): """Return True if n is a prime number Else return False. """ if n <= 1: return False if n == 2 or n == 3: return True if n % 2 == 0 or n % 3 == 0: return False j = 5 while j * j <= n: if n % j == 0 or n % (j + 2) == 0: return False j += 6 return True
Find the length of the longest substring without repeating characters. def longest_non_repeat_v1(string): """ Find the length of the longest substring without repeating characters. """ if string is None: return 0 dict = {} max_length = 0 j = 0 for i in range(len(string)): if string[i] in dict: j = max(dict[string[i]], j) dict[string[i]] = i + 1 max_length = max(max_length, i - j + 1) return max_length
Find the length of the longest substring without repeating characters. Uses alternative algorithm. def longest_non_repeat_v2(string): """ Find the length of the longest substring without repeating characters. Uses alternative algorithm. """ if string is None: return 0 start, max_len = 0, 0 used_char = {} for index, char in enumerate(string): if char in used_char and start <= used_char[char]: start = used_char[char] + 1 else: max_len = max(max_len, index - start + 1) used_char[char] = index return max_len
Find the length of the longest substring without repeating characters. Return max_len and the substring as a tuple def get_longest_non_repeat_v1(string): """ Find the length of the longest substring without repeating characters. Return max_len and the substring as a tuple """ if string is None: return 0, '' sub_string = '' dict = {} max_length = 0 j = 0 for i in range(len(string)): if string[i] in dict: j = max(dict[string[i]], j) dict[string[i]] = i + 1 if i - j + 1 > max_length: max_length = i - j + 1 sub_string = string[j: i + 1] return max_length, sub_string
Find the length of the longest substring without repeating characters. Uses alternative algorithm. Return max_len and the substring as a tuple def get_longest_non_repeat_v2(string): """ Find the length of the longest substring without repeating characters. Uses alternative algorithm. Return max_len and the substring as a tuple """ if string is None: return 0, '' sub_string = '' start, max_len = 0, 0 used_char = {} for index, char in enumerate(string): if char in used_char and start <= used_char[char]: start = used_char[char] + 1 else: if index - start + 1 > max_len: max_len = index - start + 1 sub_string = string[start: index + 1] used_char[char] = index return max_len, sub_string
Push the item in the priority queue. if priority is not given, priority is set to the value of item. def push(self, item, priority=None): """Push the item in the priority queue. if priority is not given, priority is set to the value of item. """ priority = item if priority is None else priority node = PriorityQueueNode(item, priority) for index, current in enumerate(self.priority_queue_list): if current.priority < node.priority: self.priority_queue_list.insert(index, node) return # when traversed complete queue self.priority_queue_list.append(node)
Calculates factorial iteratively. If mod is not None, then return (n! % mod) Time Complexity - O(n) def factorial(n, mod=None): """Calculates factorial iteratively. If mod is not None, then return (n! % mod) Time Complexity - O(n)""" if not (isinstance(n, int) and n >= 0): raise ValueError("'n' must be a non-negative integer.") if mod is not None and not (isinstance(mod, int) and mod > 0): raise ValueError("'mod' must be a positive integer") result = 1 if n == 0: return 1 for i in range(2, n+1): result *= i if mod: result %= mod return result
Calculates factorial recursively. If mod is not None, then return (n! % mod) Time Complexity - O(n) def factorial_recur(n, mod=None): """Calculates factorial recursively. If mod is not None, then return (n! % mod) Time Complexity - O(n)""" if not (isinstance(n, int) and n >= 0): raise ValueError("'n' must be a non-negative integer.") if mod is not None and not (isinstance(mod, int) and mod > 0): raise ValueError("'mod' must be a positive integer") if n == 0: return 1 result = n * factorial(n - 1, mod) if mod: result %= mod return result
Selection Sort Complexity: O(n^2) def selection_sort(arr, simulation=False): """ Selection Sort Complexity: O(n^2) """ iteration = 0 if simulation: print("iteration",iteration,":",*arr) for i in range(len(arr)): minimum = i for j in range(i + 1, len(arr)): # "Select" the correct value if arr[j] < arr[minimum]: minimum = j arr[minimum], arr[i] = arr[i], arr[minimum] if simulation: iteration = iteration + 1 print("iteration",iteration,":",*arr) return arr
Time Complexity: O(N) Space Complexity: O(N) def remove_dups(head): """ Time Complexity: O(N) Space Complexity: O(N) """ hashset = set() prev = Node() while head: if head.val in hashset: prev.next = head.next else: hashset.add(head.val) prev = head head = head.next
Time Complexity: O(N^2) Space Complexity: O(1) def remove_dups_wothout_set(head): """ Time Complexity: O(N^2) Space Complexity: O(1) """ current = head while current: runner = current while runner.next: if runner.next.val == current.val: runner.next = runner.next.next else: runner = runner.next current = current.next
replace u with v :param node_u: replaced node :param node_v: :return: None def transplant(self, node_u, node_v): """ replace u with v :param node_u: replaced node :param node_v: :return: None """ if node_u.parent is None: self.root = node_v elif node_u is node_u.parent.left: node_u.parent.left = node_v elif node_u is node_u.parent.right: node_u.parent.right = node_v # check is node_v is None if node_v: node_v.parent = node_u.parent
find the max node when node regard as a root node :param node: :return: max node def maximum(self, node): """ find the max node when node regard as a root node :param node: :return: max node """ temp_node = node while temp_node.right is not None: temp_node = temp_node.right return temp_node
find the minimum node when node regard as a root node :param node: :return: minimum node def minimum(self, node): """ find the minimum node when node regard as a root node :param node: :return: minimum node """ temp_node = node while temp_node.left: temp_node = temp_node.left return temp_node
Computes (base ^ exponent) % mod. Time complexity - O(log n) Use similar to Python in-built function pow. def modular_exponential(base, exponent, mod): """Computes (base ^ exponent) % mod. Time complexity - O(log n) Use similar to Python in-built function pow.""" if exponent < 0: raise ValueError("Exponent must be positive.") base %= mod result = 1 while exponent > 0: # If the last bit is 1, add 2^k. if exponent & 1: result = (result * base) % mod exponent = exponent >> 1 # Utilize modular multiplication properties to combine the computed mod C values. base = (base * base) % mod return result
:type intervals: List[Interval] :rtype: bool def can_attend_meetings(intervals): """ :type intervals: List[Interval] :rtype: bool """ intervals = sorted(intervals, key=lambda x: x.start) for i in range(1, len(intervals)): if intervals[i].start < intervals[i - 1].end: return False return True
:type root: TreeNode :type key: int :rtype: TreeNode def delete_node(self, root, key): """ :type root: TreeNode :type key: int :rtype: TreeNode """ if not root: return None if root.val == key: if root.left: # Find the right most leaf of the left sub-tree left_right_most = root.left while left_right_most.right: left_right_most = left_right_most.right # Attach right child to the right of that leaf left_right_most.right = root.right # Return left child instead of root, a.k.a delete root return root.left else: return root.right # If left or right child got deleted, the returned root is the child of the deleted node. elif root.val > key: root.left = self.deleteNode(root.left, key) else: root.right = self.deleteNode(root.right, key) return root
:type path: str :rtype: str def simplify_path(path): """ :type path: str :rtype: str """ skip = {'..', '.', ''} stack = [] paths = path.split('/') for tok in paths: if tok == '..': if stack: stack.pop() elif tok not in skip: stack.append(tok) return '/' + '/'.join(stack)
O(2**n) def subsets(nums): """ O(2**n) """ def backtrack(res, nums, stack, pos): if pos == len(nums): res.append(list(stack)) else: # take nums[pos] stack.append(nums[pos]) backtrack(res, nums, stack, pos+1) stack.pop() # dont take nums[pos] backtrack(res, nums, stack, pos+1) res = [] backtrack(res, nums, [], 0) return res
Jump Search Worst-case Complexity: O(√n) (root(n)) All items in list must be sorted like binary search Find block that contains target value and search it linearly in that block It returns a first target value in array reference: https://en.wikipedia.org/wiki/Jump_search def jump_search(arr,target): """Jump Search Worst-case Complexity: O(√n) (root(n)) All items in list must be sorted like binary search Find block that contains target value and search it linearly in that block It returns a first target value in array reference: https://en.wikipedia.org/wiki/Jump_search """ n = len(arr) block_size = int(math.sqrt(n)) block_prev = 0 block= block_size # return -1 means that array doesn't contain taget value # find block that contains target value if arr[n - 1] < target: return -1 while block <= n and arr[block - 1] < target: block_prev = block block += block_size # find target value in block while arr[block_prev] < target : block_prev += 1 if block_prev == min(block, n) : return -1 # if there is target value in array, return it if arr[block_prev] == target : return block_prev else : return -1
Takes as input multi dimensional iterable and returns generator which produces one dimensional output. def flatten_iter(iterable): """ Takes as input multi dimensional iterable and returns generator which produces one dimensional output. """ for element in iterable: if isinstance(element, Iterable): yield from flatten_iter(element) else: yield element
Bidirectional BFS!!! :type begin_word: str :type end_word: str :type word_list: Set[str] :rtype: int def ladder_length(begin_word, end_word, word_list): """ Bidirectional BFS!!! :type begin_word: str :type end_word: str :type word_list: Set[str] :rtype: int """ if len(begin_word) != len(end_word): return -1 # not possible if begin_word == end_word: return 0 # when only differ by 1 character if sum(c1 != c2 for c1, c2 in zip(begin_word, end_word)) == 1: return 1 begin_set = set() end_set = set() begin_set.add(begin_word) end_set.add(end_word) result = 2 while begin_set and end_set: if len(begin_set) > len(end_set): begin_set, end_set = end_set, begin_set next_begin_set = set() for word in begin_set: for ladder_word in word_range(word): if ladder_word in end_set: return result if ladder_word in word_list: next_begin_set.add(ladder_word) word_list.remove(ladder_word) begin_set = next_begin_set result += 1 # print(begin_set) # print(result) return -1
Iterable to get every convolution window per loop iteration. For example: `convolved([1, 2, 3, 4], kernel_size=2)` will produce the following result: `[[1, 2], [2, 3], [3, 4]]`. `convolved([1, 2, 3], kernel_size=2, stride=1, padding=2, default_value=42)` will produce the following result: `[[42, 42], [42, 1], [1, 2], [2, 3], [3, 42], [42, 42]]` Arguments: iterable: An object to iterate on. It should support slice indexing if `padding == 0`. kernel_size: The number of items yielded at every iteration. stride: The step size between each iteration. padding: Padding must be an integer or a string with value `SAME` or `VALID`. If it is an integer, it represents how many values we add with `default_value` on the borders. If it is a string, `SAME` means that the convolution will add some padding according to the kernel_size, and `VALID` is the same as specifying `padding=0`. default_value: Default fill value for padding and values outside iteration range. For more information, refer to: - https://github.com/guillaume-chevalier/python-conv-lib/blob/master/conv/conv.py - https://github.com/guillaume-chevalier/python-conv-lib - MIT License, Copyright (c) 2018 Guillaume Chevalier def convolved(iterable, kernel_size=1, stride=1, padding=0, default_value=None): """Iterable to get every convolution window per loop iteration. For example: `convolved([1, 2, 3, 4], kernel_size=2)` will produce the following result: `[[1, 2], [2, 3], [3, 4]]`. `convolved([1, 2, 3], kernel_size=2, stride=1, padding=2, default_value=42)` will produce the following result: `[[42, 42], [42, 1], [1, 2], [2, 3], [3, 42], [42, 42]]` Arguments: iterable: An object to iterate on. It should support slice indexing if `padding == 0`. kernel_size: The number of items yielded at every iteration. stride: The step size between each iteration. padding: Padding must be an integer or a string with value `SAME` or `VALID`. If it is an integer, it represents how many values we add with `default_value` on the borders. If it is a string, `SAME` means that the convolution will add some padding according to the kernel_size, and `VALID` is the same as specifying `padding=0`. default_value: Default fill value for padding and values outside iteration range. For more information, refer to: - https://github.com/guillaume-chevalier/python-conv-lib/blob/master/conv/conv.py - https://github.com/guillaume-chevalier/python-conv-lib - MIT License, Copyright (c) 2018 Guillaume Chevalier """ # Input validation and error messages if not hasattr(iterable, '__iter__'): raise ValueError( "Can't iterate on object.".format( iterable)) if stride < 1: raise ValueError( "Stride must be of at least one. Got `stride={}`.".format( stride)) if not (padding in ['SAME', 'VALID'] or type(padding) in [int]): raise ValueError( "Padding must be an integer or a string with value `SAME` or `VALID`.") if not isinstance(padding, str): if padding < 0: raise ValueError( "Padding must be of at least zero. Got `padding={}`.".format( padding)) else: if padding == 'SAME': padding = kernel_size // 2 elif padding == 'VALID': padding = 0 if not type(iterable) == list: iterable = list(iterable) # Add padding to iterable if padding > 0: pad = [default_value] * padding iterable = pad + list(iterable) + pad # Fill missing value to the right remainder = (kernel_size - len(iterable)) % stride extra_pad = [default_value] * remainder iterable = iterable + extra_pad i = 0 while True: if i > len(iterable) - kernel_size: break yield iterable[i:i + kernel_size] i += stride
1D Iterable to get every convolution window per loop iteration. For more information, refer to: - https://github.com/guillaume-chevalier/python-conv-lib/blob/master/conv/conv.py - https://github.com/guillaume-chevalier/python-conv-lib - MIT License, Copyright (c) 2018 Guillaume Chevalier def convolved_1d(iterable, kernel_size=1, stride=1, padding=0, default_value=None): """1D Iterable to get every convolution window per loop iteration. For more information, refer to: - https://github.com/guillaume-chevalier/python-conv-lib/blob/master/conv/conv.py - https://github.com/guillaume-chevalier/python-conv-lib - MIT License, Copyright (c) 2018 Guillaume Chevalier """ return convolved(iterable, kernel_size, stride, padding, default_value)
2D Iterable to get every convolution window per loop iteration. For more information, refer to: - https://github.com/guillaume-chevalier/python-conv-lib/blob/master/conv/conv.py - https://github.com/guillaume-chevalier/python-conv-lib - MIT License, Copyright (c) 2018 Guillaume Chevalier def convolved_2d(iterable, kernel_size=1, stride=1, padding=0, default_value=None): """2D Iterable to get every convolution window per loop iteration. For more information, refer to: - https://github.com/guillaume-chevalier/python-conv-lib/blob/master/conv/conv.py - https://github.com/guillaume-chevalier/python-conv-lib - MIT License, Copyright (c) 2018 Guillaume Chevalier """ kernel_size = dimensionize(kernel_size, nd=2) stride = dimensionize(stride, nd=2) padding = dimensionize(padding, nd=2) for row_packet in convolved(iterable, kernel_size[0], stride[0], padding[0], default_value): transposed_inner = [] for col in tuple(row_packet): transposed_inner.append(list( convolved(col, kernel_size[1], stride[1], padding[1], default_value) )) if len(transposed_inner) > 0: for col_i in range(len(transposed_inner[0])): yield tuple(row_j[col_i] for row_j in transposed_inner)
Convert integers to a list of integers to fit the number of dimensions if the argument is not already a list. For example: `dimensionize(3, nd=2)` will produce the following result: `(3, 3)`. `dimensionize([3, 1], nd=2)` will produce the following result: `[3, 1]`. For more information, refer to: - https://github.com/guillaume-chevalier/python-conv-lib/blob/master/conv/conv.py - https://github.com/guillaume-chevalier/python-conv-lib - MIT License, Copyright (c) 2018 Guillaume Chevalier def dimensionize(maybe_a_list, nd=2): """Convert integers to a list of integers to fit the number of dimensions if the argument is not already a list. For example: `dimensionize(3, nd=2)` will produce the following result: `(3, 3)`. `dimensionize([3, 1], nd=2)` will produce the following result: `[3, 1]`. For more information, refer to: - https://github.com/guillaume-chevalier/python-conv-lib/blob/master/conv/conv.py - https://github.com/guillaume-chevalier/python-conv-lib - MIT License, Copyright (c) 2018 Guillaume Chevalier """ if not hasattr(maybe_a_list, '__iter__'): # Argument is probably an integer so we map it to a list of size `nd`. now_a_list = [maybe_a_list] * nd return now_a_list else: # Argument is probably an `nd`-sized list. return maybe_a_list
:type nums: List[int] :type k: int :rtype: List[int] def max_sliding_window(nums, k): """ :type nums: List[int] :type k: int :rtype: List[int] """ if not nums: return nums queue = collections.deque() res = [] for num in nums: if len(queue) < k: queue.append(num) else: res.append(max(queue)) queue.popleft() queue.append(num) res.append(max(queue)) return res
Merge intervals in the form of a list. def merge_intervals(intervals): """ Merge intervals in the form of a list. """ if intervals is None: return None intervals.sort(key=lambda i: i[0]) out = [intervals.pop(0)] for i in intervals: if out[-1][-1] >= i[0]: out[-1][-1] = max(out[-1][-1], i[-1]) else: out.append(i) return out
Merge two intervals into one. def merge(intervals): """ Merge two intervals into one. """ out = [] for i in sorted(intervals, key=lambda i: i.start): if out and i.start <= out[-1].end: out[-1].end = max(out[-1].end, i.end) else: out += i, return out
Print out the intervals. def print_intervals(intervals): """ Print out the intervals. """ res = [] for i in intervals: res.append(repr(i)) print("".join(res))
Rotate the entire array 'k' times T(n)- O(nk) :type array: List[int] :type k: int :rtype: void Do not return anything, modify array in-place instead. def rotate_v1(array, k): """ Rotate the entire array 'k' times T(n)- O(nk) :type array: List[int] :type k: int :rtype: void Do not return anything, modify array in-place instead. """ array = array[:] n = len(array) for i in range(k): # unused variable is not a problem temp = array[n - 1] for j in range(n-1, 0, -1): array[j] = array[j - 1] array[0] = temp return array
Reverse segments of the array, followed by the entire array T(n)- O(n) :type array: List[int] :type k: int :rtype: void Do not return anything, modify nums in-place instead. def rotate_v2(array, k): """ Reverse segments of the array, followed by the entire array T(n)- O(n) :type array: List[int] :type k: int :rtype: void Do not return anything, modify nums in-place instead. """ array = array[:] def reverse(arr, a, b): while a < b: arr[a], arr[b] = arr[b], arr[a] a += 1 b -= 1 n = len(array) k = k % n reverse(array, 0, n - k - 1) reverse(array, n - k, n - 1) reverse(array, 0, n - 1) return array
:type matrix: List[List[int]] :rtype: List[List[int]] def pacific_atlantic(matrix): """ :type matrix: List[List[int]] :rtype: List[List[int]] """ n = len(matrix) if not n: return [] m = len(matrix[0]) if not m: return [] res = [] atlantic = [[False for _ in range (n)] for _ in range(m)] pacific = [[False for _ in range (n)] for _ in range(m)] for i in range(n): dfs(pacific, matrix, float("-inf"), i, 0) dfs(atlantic, matrix, float("-inf"), i, m-1) for i in range(m): dfs(pacific, matrix, float("-inf"), 0, i) dfs(atlantic, matrix, float("-inf"), n-1, i) for i in range(n): for j in range(m): if pacific[i][j] and atlantic[i][j]: res.append([i, j]) return res
Quick sort Complexity: best O(n log(n)) avg O(n log(n)), worst O(N^2) def quick_sort(arr, simulation=False): """ Quick sort Complexity: best O(n log(n)) avg O(n log(n)), worst O(N^2) """ iteration = 0 if simulation: print("iteration",iteration,":",*arr) arr, _ = quick_sort_recur(arr, 0, len(arr) - 1, iteration, simulation) return arr
:type s: str :rtype: bool def is_palindrome(s): """ :type s: str :rtype: bool """ i = 0 j = len(s)-1 while i < j: while i < j and not s[i].isalnum(): i += 1 while i < j and not s[j].isalnum(): j -= 1 if s[i].lower() != s[j].lower(): return False i, j = i+1, j-1 return True
:type digits: List[int] :rtype: List[int] def plus_one_v1(digits): """ :type digits: List[int] :rtype: List[int] """ digits[-1] = digits[-1] + 1 res = [] ten = 0 i = len(digits)-1 while i >= 0 or ten == 1: summ = 0 if i >= 0: summ += digits[i] if ten: summ += 1 res.append(summ % 10) ten = summ // 10 i -= 1 return res[::-1]
:type head: ListNode :type k: int :rtype: ListNode def rotate_right(head, k): """ :type head: ListNode :type k: int :rtype: ListNode """ if not head or not head.next: return head current = head length = 1 # count length of the list while current.next: current = current.next length += 1 # make it circular current.next = head k = k % length # rotate until length-k for i in range(length-k): current = current.next head = current.next current.next = None return head
:type s: str :rtype: int def num_decodings(s): """ :type s: str :rtype: int """ if not s or s[0] == "0": return 0 wo_last, wo_last_two = 1, 1 for i in range(1, len(s)): x = wo_last if s[i] != "0" else 0 y = wo_last_two if int(s[i-1:i+1]) < 27 and s[i-1] != "0" else 0 wo_last_two = wo_last wo_last = x+y return wo_last
:type nums: List[int] :type target: int :rtype: List[int] def search_range(nums, target): """ :type nums: List[int] :type target: int :rtype: List[int] """ low = 0 high = len(nums) - 1 while low <= high: mid = low + (high - low) // 2 if target < nums[mid]: high = mid - 1 elif target > nums[mid]: low = mid + 1 else: break for j in range(len(nums) - 1, -1, -1): if nums[j] == target: return [mid, j] return [-1, -1]
:type head: Node :rtype: Node def first_cyclic_node(head): """ :type head: Node :rtype: Node """ runner = walker = head while runner and runner.next: runner = runner.next.next walker = walker.next if runner is walker: break if runner is None or runner.next is None: return None walker = head while runner is not walker: runner, walker = runner.next, walker.next return runner
Heap Sort that uses a max heap to sort an array in ascending order Complexity: O(n log(n)) def max_heap_sort(arr, simulation=False): """ Heap Sort that uses a max heap to sort an array in ascending order Complexity: O(n log(n)) """ iteration = 0 if simulation: print("iteration",iteration,":",*arr) for i in range(len(arr) - 1, 0, -1): iteration = max_heapify(arr, i, simulation, iteration) if simulation: iteration = iteration + 1 print("iteration",iteration,":",*arr) return arr
Max heapify helper for max_heap_sort def max_heapify(arr, end, simulation, iteration): """ Max heapify helper for max_heap_sort """ last_parent = (end - 1) // 2 # Iterate from last parent to first for parent in range(last_parent, -1, -1): current_parent = parent # Iterate from current_parent to last_parent while current_parent <= last_parent: # Find greatest child of current_parent child = 2 * current_parent + 1 if child + 1 <= end and arr[child] < arr[child + 1]: child = child + 1 # Swap if child is greater than parent if arr[child] > arr[current_parent]: arr[current_parent], arr[child] = arr[child], arr[current_parent] current_parent = child if simulation: iteration = iteration + 1 print("iteration",iteration,":",*arr) # If no swap occured, no need to keep iterating else: break arr[0], arr[end] = arr[end], arr[0] return iteration
Heap Sort that uses a min heap to sort an array in ascending order Complexity: O(n log(n)) def min_heap_sort(arr, simulation=False): """ Heap Sort that uses a min heap to sort an array in ascending order Complexity: O(n log(n)) """ iteration = 0 if simulation: print("iteration",iteration,":",*arr) for i in range(0, len(arr) - 1): iteration = min_heapify(arr, i, simulation, iteration) return arr
Min heapify helper for min_heap_sort def min_heapify(arr, start, simulation, iteration): """ Min heapify helper for min_heap_sort """ # Offset last_parent by the start (last_parent calculated as if start index was 0) # All array accesses need to be offset by start end = len(arr) - 1 last_parent = (end - start - 1) // 2 # Iterate from last parent to first for parent in range(last_parent, -1, -1): current_parent = parent # Iterate from current_parent to last_parent while current_parent <= last_parent: # Find lesser child of current_parent child = 2 * current_parent + 1 if child + 1 <= end - start and arr[child + start] > arr[ child + 1 + start]: child = child + 1 # Swap if child is less than parent if arr[child + start] < arr[current_parent + start]: arr[current_parent + start], arr[child + start] = \ arr[child + start], arr[current_parent + start] current_parent = child if simulation: iteration = iteration + 1 print("iteration",iteration,":",*arr) # If no swap occured, no need to keep iterating else: break return iteration
the RSA key generating algorithm k is the number of bits in n def generate_key(k, seed=None): """ the RSA key generating algorithm k is the number of bits in n """ def modinv(a, m): """calculate the inverse of a mod m that is, find b such that (a * b) % m == 1""" b = 1 while not (a * b) % m == 1: b += 1 return b def gen_prime(k, seed=None): """generate a prime with k bits""" def is_prime(num): if num == 2: return True for i in range(2, int(num ** 0.5) + 1): if num % i == 0: return False return True random.seed(seed) while True: key = random.randrange(int(2 ** (k - 1)), int(2 ** k)) if is_prime(key): return key # size in bits of p and q need to add up to the size of n p_size = k / 2 q_size = k - p_size e = gen_prime(k, seed) # in many cases, e is also chosen to be a small constant while True: p = gen_prime(p_size, seed) if p % e != 1: break while True: q = gen_prime(q_size, seed) if q % e != 1: break n = p * q l = (p - 1) * (q - 1) # calculate totient function d = modinv(e, l) return int(n), int(e), int(d)
Return square root of n, with maximum absolute error epsilon def square_root(n, epsilon=0.001): """Return square root of n, with maximum absolute error epsilon""" guess = n / 2 while abs(guess * guess - n) > epsilon: guess = (guess + (n / guess)) / 2 return guess
Counting_sort Sorting a array which has no element greater than k Creating a new temp_arr,where temp_arr[i] contain the number of element less than or equal to i in the arr Then placing the number i into a correct position in the result_arr return the result_arr Complexity: 0(n) def counting_sort(arr): """ Counting_sort Sorting a array which has no element greater than k Creating a new temp_arr,where temp_arr[i] contain the number of element less than or equal to i in the arr Then placing the number i into a correct position in the result_arr return the result_arr Complexity: 0(n) """ m = min(arr) # in case there are negative elements, change the array to all positive element different = 0 if m < 0: # save the change, so that we can convert the array back to all positive number different = -m for i in range(len(arr)): arr[i] += -m k = max(arr) temp_arr = [0] * (k + 1) for i in range(0, len(arr)): temp_arr[arr[i]] = temp_arr[arr[i]] + 1 # temp_array[i] contain the times the number i appear in arr for i in range(1, k + 1): temp_arr[i] = temp_arr[i] + temp_arr[i - 1] # temp_array[i] contain the number of element less than or equal i in arr result_arr = arr.copy() # creating a result_arr an put the element in a correct positon for i in range(len(arr) - 1, -1, -1): result_arr[temp_arr[arr[i]] - 1] = arr[i] - different temp_arr[arr[i]] = temp_arr[arr[i]] - 1 return result_arr
Calculate the powerset of any iterable. For a range of integers up to the length of the given list, make all possible combinations and chain them together as one object. From https://docs.python.org/3/library/itertools.html#itertools-recipes def powerset(iterable): """Calculate the powerset of any iterable. For a range of integers up to the length of the given list, make all possible combinations and chain them together as one object. From https://docs.python.org/3/library/itertools.html#itertools-recipes """ "list(powerset([1,2,3])) --> [(), (1,), (2,), (3,), (1,2), (1,3), (2,3), (1,2,3)]" s = list(iterable) return chain.from_iterable(combinations(s, r) for r in range(len(s) + 1))
Optimal algorithm - DONT USE ON BIG INPUTS - O(2^n) complexity! Finds the minimum cost subcollection os S that covers all elements of U Args: universe (list): Universe of elements subsets (dict): Subsets of U {S1:elements,S2:elements} costs (dict): Costs of each subset in S - {S1:cost, S2:cost...} def optimal_set_cover(universe, subsets, costs): """ Optimal algorithm - DONT USE ON BIG INPUTS - O(2^n) complexity! Finds the minimum cost subcollection os S that covers all elements of U Args: universe (list): Universe of elements subsets (dict): Subsets of U {S1:elements,S2:elements} costs (dict): Costs of each subset in S - {S1:cost, S2:cost...} """ pset = powerset(subsets.keys()) best_set = None best_cost = float("inf") for subset in pset: covered = set() cost = 0 for s in subset: covered.update(subsets[s]) cost += costs[s] if len(covered) == len(universe) and cost < best_cost: best_set = subset best_cost = cost return best_set
Approximate greedy algorithm for set-covering. Can be used on large inputs - though not an optimal solution. Args: universe (list): Universe of elements subsets (dict): Subsets of U {S1:elements,S2:elements} costs (dict): Costs of each subset in S - {S1:cost, S2:cost...} def greedy_set_cover(universe, subsets, costs): """Approximate greedy algorithm for set-covering. Can be used on large inputs - though not an optimal solution. Args: universe (list): Universe of elements subsets (dict): Subsets of U {S1:elements,S2:elements} costs (dict): Costs of each subset in S - {S1:cost, S2:cost...} """ elements = set(e for s in subsets.keys() for e in subsets[s]) # elements don't cover universe -> invalid input for set cover if elements != universe: return None # track elements of universe covered covered = set() cover_sets = [] while covered != universe: min_cost_elem_ratio = float("inf") min_set = None # find set with minimum cost:elements_added ratio for s, elements in subsets.items(): new_elements = len(elements - covered) # set may have same elements as already covered -> new_elements = 0 # check to avoid division by 0 error if new_elements != 0: cost_elem_ratio = costs[s] / new_elements if cost_elem_ratio < min_cost_elem_ratio: min_cost_elem_ratio = cost_elem_ratio min_set = s cover_sets.append(min_set) # union covered |= subsets[min_set] return cover_sets
:type n: int :rtype: int def num_trees(n): """ :type n: int :rtype: int """ dp = [0] * (n+1) dp[0] = 1 dp[1] = 1 for i in range(2, n+1): for j in range(i+1): dp[i] += dp[i-j] * dp[j-1] return dp[-1]
:type val: int :rtype: float def next(self, val): """ :type val: int :rtype: float """ self.queue.append(val) return sum(self.queue) / len(self.queue)
n: int nums: list[object] target: object sum_closure: function, optional Given two elements of nums, return sum of both. compare_closure: function, optional Given one object of nums and target, return -1, 1, or 0. same_closure: function, optional Given two object of nums, return bool. return: list[list[object]] Note: 1. type of sum_closure's return should be same as type of compare_closure's first param def n_sum(n, nums, target, **kv): """ n: int nums: list[object] target: object sum_closure: function, optional Given two elements of nums, return sum of both. compare_closure: function, optional Given one object of nums and target, return -1, 1, or 0. same_closure: function, optional Given two object of nums, return bool. return: list[list[object]] Note: 1. type of sum_closure's return should be same as type of compare_closure's first param """ def sum_closure_default(a, b): return a + b def compare_closure_default(num, target): """ above, below, or right on? """ if num < target: return -1 elif num > target: return 1 else: return 0 def same_closure_default(a, b): return a == b def n_sum(n, nums, target): if n == 2: # want answers with only 2 terms? easy! results = two_sum(nums, target) else: results = [] prev_num = None for index, num in enumerate(nums): if prev_num is not None and \ same_closure(prev_num, num): continue prev_num = num n_minus1_results = ( n_sum( # recursive call n - 1, # a nums[index + 1:], # b target - num # c ) # x = n_sum( a, b, c ) ) # n_minus1_results = x n_minus1_results = ( append_elem_to_each_list(num, n_minus1_results) ) results += n_minus1_results return union(results) def two_sum(nums, target): nums.sort() lt = 0 rt = len(nums) - 1 results = [] while lt < rt: sum_ = sum_closure(nums[lt], nums[rt]) flag = compare_closure(sum_, target) if flag == -1: lt += 1 elif flag == 1: rt -= 1 else: results.append(sorted([nums[lt], nums[rt]])) lt += 1 rt -= 1 while (lt < len(nums) and same_closure(nums[lt - 1], nums[lt])): lt += 1 while (0 <= rt and same_closure(nums[rt], nums[rt + 1])): rt -= 1 return results def append_elem_to_each_list(elem, container): results = [] for elems in container: elems.append(elem) results.append(sorted(elems)) return results def union(duplicate_results): results = [] if len(duplicate_results) != 0: duplicate_results.sort() results.append(duplicate_results[0]) for result in duplicate_results[1:]: if results[-1] != result: results.append(result) return results sum_closure = kv.get('sum_closure', sum_closure_default) same_closure = kv.get('same_closure', same_closure_default) compare_closure = kv.get('compare_closure', compare_closure_default) nums.sort() return n_sum(n, nums, target)
:type pattern: str :type string: str :rtype: bool def pattern_match(pattern, string): """ :type pattern: str :type string: str :rtype: bool """ def backtrack(pattern, string, dic): if len(pattern) == 0 and len(string) > 0: return False if len(pattern) == len(string) == 0: return True for end in range(1, len(string)-len(pattern)+2): if pattern[0] not in dic and string[:end] not in dic.values(): dic[pattern[0]] = string[:end] if backtrack(pattern[1:], string[end:], dic): return True del dic[pattern[0]] elif pattern[0] in dic and dic[pattern[0]] == string[:end]: if backtrack(pattern[1:], string[end:], dic): return True return False return backtrack(pattern, string, {})
Bogo Sort Best Case Complexity: O(n) Worst Case Complexity: O(∞) Average Case Complexity: O(n(n-1)!) def bogo_sort(arr, simulation=False): """Bogo Sort Best Case Complexity: O(n) Worst Case Complexity: O(∞) Average Case Complexity: O(n(n-1)!) """ iteration = 0 if simulation: print("iteration",iteration,":",*arr) def is_sorted(arr): #check the array is inorder i = 0 arr_len = len(arr) while i+1 < arr_len: if arr[i] > arr[i+1]: return False i += 1 return True while not is_sorted(arr): random.shuffle(arr) if simulation: iteration = iteration + 1 print("iteration",iteration,":",*arr) return arr
Insert new key into node def insert(self, key): """ Insert new key into node """ # Create new node n = TreeNode(key) if not self.node: self.node = n self.node.left = AvlTree() self.node.right = AvlTree() elif key < self.node.val: self.node.left.insert(key) elif key > self.node.val: self.node.right.insert(key) self.re_balance()
Re balance tree. After inserting or deleting a node, def re_balance(self): """ Re balance tree. After inserting or deleting a node, """ self.update_heights(recursive=False) self.update_balances(False) while self.balance < -1 or self.balance > 1: if self.balance > 1: if self.node.left.balance < 0: self.node.left.rotate_left() self.update_heights() self.update_balances() self.rotate_right() self.update_heights() self.update_balances() if self.balance < -1: if self.node.right.balance > 0: self.node.right.rotate_right() self.update_heights() self.update_balances() self.rotate_left() self.update_heights() self.update_balances()
Update tree height def update_heights(self, recursive=True): """ Update tree height """ if self.node: if recursive: if self.node.left: self.node.left.update_heights() if self.node.right: self.node.right.update_heights() self.height = 1 + max(self.node.left.height, self.node.right.height) else: self.height = -1
Calculate tree balance factor def update_balances(self, recursive=True): """ Calculate tree balance factor """ if self.node: if recursive: if self.node.left: self.node.left.update_balances() if self.node.right: self.node.right.update_balances() self.balance = self.node.left.height - self.node.right.height else: self.balance = 0
Right rotation def rotate_right(self): """ Right rotation """ new_root = self.node.left.node new_left_sub = new_root.right.node old_root = self.node self.node = new_root old_root.left.node = new_left_sub new_root.right.node = old_root
Left rotation def rotate_left(self): """ Left rotation """ new_root = self.node.right.node new_left_sub = new_root.left.node old_root = self.node self.node = new_root old_root.right.node = new_left_sub new_root.left.node = old_root
In-order traversal of the tree def in_order_traverse(self): """ In-order traversal of the tree """ result = [] if not self.node: return result result.extend(self.node.left.in_order_traverse()) result.append(self.node.key) result.extend(self.node.right.in_order_traverse()) return result
:type low: str :type high: str :rtype: int def strobogrammatic_in_range(low, high): """ :type low: str :type high: str :rtype: int """ res = [] count = 0 low_len = len(low) high_len = len(high) for i in range(low_len, high_len + 1): res.extend(helper2(i, i)) for perm in res: if len(perm) == low_len and int(perm) < int(low): continue elif len(perm) == high_len and int(perm) > int(high): continue else: count += 1 return count
:type words: List[str] :rtype: List[str] def find_keyboard_row(words): """ :type words: List[str] :rtype: List[str] """ keyboard = [ set('qwertyuiop'), set('asdfghjkl'), set('zxcvbnm'), ] result = [] for word in words: for key in keyboard: if set(word.lower()).issubset(key): result.append(word) return result
This is a suboptimal, hacky method using eval(), which is not safe for user input. We guard against danger by ensuring k in an int def kth_to_last_eval(head, k): """ This is a suboptimal, hacky method using eval(), which is not safe for user input. We guard against danger by ensuring k in an int """ if not isinstance(k, int) or not head.val: return False nexts = '.'.join(['next' for n in range(1, k+1)]) seeker = str('.'.join(['head', nexts])) while head: if eval(seeker) is None: return head else: head = head.next return False
This is a brute force method where we keep a dict the size of the list Then we check it for the value we need. If the key is not in the dict, our and statement will short circuit and return False def kth_to_last_dict(head, k): """ This is a brute force method where we keep a dict the size of the list Then we check it for the value we need. If the key is not in the dict, our and statement will short circuit and return False """ if not (head and k > -1): return False d = dict() count = 0 while head: d[count] = head head = head.next count += 1 return len(d)-k in d and d[len(d)-k]
This is an optimal method using iteration. We move p1 k steps ahead into the list. Then we move p1 and p2 together until p1 hits the end. def kth_to_last(head, k): """ This is an optimal method using iteration. We move p1 k steps ahead into the list. Then we move p1 and p2 together until p1 hits the end. """ if not (head or k > -1): return False p1 = head p2 = head for i in range(1, k+1): if p1 is None: # Went too far, k is not valid raise IndexError p1 = p1.next while p1: p1 = p1.next p2 = p2.next return p2
Wortst Time Complexity: O(NlogN) :type buildings: List[List[int]] :rtype: List[List[int]] def get_skyline(lrh): """ Wortst Time Complexity: O(NlogN) :type buildings: List[List[int]] :rtype: List[List[int]] """ skyline, live = [], [] i, n = 0, len(lrh) while i < n or live: if not live or i < n and lrh[i][0] <= -live[0][1]: x = lrh[i][0] while i < n and lrh[i][0] == x: heapq.heappush(live, (-lrh[i][2], -lrh[i][1])) i += 1 else: x = -live[0][1] while live and -live[0][1] <= x: heapq.heappop(live) height = len(live) and -live[0][0] if not skyline or height != skyline[-1][1]: skyline += [x, height], return skyline
:type array: List[int] :rtype: List[] def summarize_ranges(array): """ :type array: List[int] :rtype: List[] """ res = [] if len(array) == 1: return [str(array[0])] i = 0 while i < len(array): num = array[i] while i + 1 < len(array) and array[i + 1] - array[i] == 1: i += 1 if array[i] != num: res.append((num, array[i])) else: res.append((num, num)) i += 1 return res