backup / data /data_utils.py
MatchLab's picture
Upload folder using huggingface_hub
c94c8c9 verified
import random
import csv
from collections import Counter
import re
import numpy as np
import torch
from data.datasets.constant import VALID_CLASS_IDS_200
from safetensors.torch import load_file
from safetensors.torch import load
from huggingface_hub import hf_hub_download
_MEAN = (0.48145466, 0.4578275, 0.40821073)
_STD = (0.26862954, 0.26130258, 0.27577711)
MEAN = torch.tensor(_MEAN, dtype=torch.float32).view(1, 3, 1, 1)
STD = torch.tensor(_STD, dtype=torch.float32).view(1, 3, 1, 1)
def normalize_images(images: torch.Tensor):
# images: [N,3,H,W] uint8 or float
if images.dtype == torch.uint8:
images = images.float().div_(255.0)
else:
images = images.float()
return images.sub_(MEAN).div_(STD)
def load_safetensor_from_hf(repo_id, filename, repo_type="dataset"):
if filename.startswith('lsun'):
filename = '/home/m50048399/transfered/ye_project/Project2/' + filename
with open(filename, "rb") as f:
return load(f.read())
else:
cached_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
repo_type=repo_type,
local_files_only=True
)
return load_file(cached_path)
def per_scene_pad(lang_list, max_len=64, tokenizer=None, max_seq_len=50):
"""
@param lang_list: lang json for all sentences, must include scan_id in the json element
@param max_len: the number for padding, default is 64
@return: a list of list, with each element in the list containing max_len number of sentences corresponding to
one scene
"""
scene_list = {}
if tokenizer is not None:
for key in ["utterance", "question", "description"]:
if key in lang_list[0].keys():
encoded_input = tokenizer(
[item[key] for item in lang_list], padding="max_length", truncation=True, max_length=max_seq_len
)
lang_list = [
{
k : (v, encoded_input["input_ids"][idx], encoded_input["attention_mask"][idx])
if k == key else v for k, v in item.items()
} for idx, item in enumerate(lang_list)
]
for item in lang_list:
scan_id = item["scan_id"]
if scan_id not in scene_list.keys():
scene_list[scan_id] = [item]
else:
scene_list[scan_id].append(item)
final_list = []
for key, value in scene_list.items():
for index in range(0, len(value), max_len):
if index + max_len < len(value):
final_list.append(value[index:index + max_len])
else:
content = value[index:]
sampled = random.choices(content, k=max_len)
final_list.append(sampled)
return final_list
def merge_tokens(token1, mask1, token2, mask2, max_len=300, tokenizer=None):
assert len(token1) > len(token2), "not appendable"
assert tokenizer is not None, "should pass in a tokenizer"
len_token1 = sum(mask1) - 1 # remove the last [CLS]
len_token2 = sum(mask2) - 1 # remove the first [BOS]
insert_length = min(max_len - len_token1, len_token2)
token1[len_token1: len_token1 + insert_length] = token2[1: 1 + insert_length]
mask1[len_token1: len_token1 + insert_length] = mask2[1: 1 + insert_length]
if token1[sum(mask1) - 1] != tokenizer.sep_token_id:
token1[sum(mask1) - 1] = tokenizer.sep_token_id
return token1, mask1
def convert_pc_to_box(obj_pc):
xmin = np.min(obj_pc[:,0])
ymin = np.min(obj_pc[:,1])
zmin = np.min(obj_pc[:,2])
xmax = np.max(obj_pc[:,0])
ymax = np.max(obj_pc[:,1])
zmax = np.max(obj_pc[:,2])
center = [(xmin+xmax)/2, (ymin+ymax)/2, (zmin+zmax)/2]
box_size = [xmax-xmin, ymax-ymin, zmax-zmin]
return center, box_size
# input txt_ids, txt_masks
def random_word(tokens, tokens_mask, tokenizer, mask_ratio):
output_label = []
output_tokens = tokens.clone()
for i, token in enumerate(tokens):
if tokens_mask[i] == 0:
output_label.append(-1)
else:
prob = random.random()
# mask token with 15% probability
if prob < mask_ratio:
prob /= mask_ratio
# 80% randomly change token to mask token
if prob < 0.8:
output_tokens[i] = tokenizer.mask_token_id
# 10% randomly change token to random token
elif prob < 0.9:
output_tokens[i] = random.choice(list(tokenizer.vocab.items()))[1]
# -> rest 10% randomly keep current token
# append current token to output (we will predict these later)
output_label.append(token.item())
else:
# no masking token (will be ignored by loss function later)
output_label.append(-1)
output_label = torch.Tensor(output_label).long()
return output_tokens, output_label
def random_point_cloud(pcd, pcd_mask, mask_ratio):
assert len(pcd) == len(pcd_mask)
output_mask = []
for i in range(len(pcd)):
if pcd_mask[i] == 0:
output_mask.append(0)
else:
prob = random.random()
if prob < mask_ratio:
output_mask.append(0)
else:
output_mask.append(1)
output_mask = torch.tensor(output_mask, dtype=torch.bool)
return output_mask
class LabelConverter(object):
def __init__(self, file_path):
self.raw_name_to_id = {}
self.nyu40id_to_id = {}
self.nyu40_name_to_id = {}
self.scannet_name_to_scannet_id = {'cabinet':0, 'bed':1, 'chair':2, 'sofa':3, 'table':4,
'door':5, 'window':6,'bookshelf':7,'picture':8, 'counter':9, 'desk':10, 'curtain':11,
'refrigerator':12, 'shower curtain':13, 'toilet':14, 'sink':15, 'bathtub':16, 'others':17}
self.id_to_scannetid = {}
self.scannet_raw_id_to_raw_name = {}
with open(file_path, encoding='utf-8') as fd:
rd = list(csv.reader(fd, delimiter="\t", quotechar='"'))
for i in range(1, len(rd)):
raw_id = i - 1
scannet_raw_id = int(rd[i][0])
raw_name = rd[i][1]
nyu40_id = int(rd[i][4])
nyu40_name = rd[i][7]
self.raw_name_to_id[raw_name] = raw_id
self.scannet_raw_id_to_raw_name[scannet_raw_id] = raw_name
self.nyu40id_to_id[nyu40_id] = raw_id
self.nyu40_name_to_id[nyu40_name] = raw_id
if nyu40_name not in self.scannet_name_to_scannet_id:
self.id_to_scannetid[raw_id] = self.scannet_name_to_scannet_id['others']
else:
self.id_to_scannetid[raw_id] = self.scannet_name_to_scannet_id[nyu40_name]
### add instance id from org image to pth file
self.orgInstID_to_id = {id : id - 1 for id in range(1, 257)}
self.orgInstID_to_id[0] = -100
# add map for scannet 200
self.scannet_raw_id_to_scannet200_id = {}
self.scannet200_id_to_scannet_raw_id = {}
for v, k in enumerate(VALID_CLASS_IDS_200):
self.scannet_raw_id_to_scannet200_id[k] = v
self.scannet200_id_to_scannet_raw_id[v] = k
def build_rotate_mat(split, rot_aug=True, rand_angle='axis'):
if rand_angle == 'random':
theta = np.random.rand() * np.pi * 2
else:
ROTATE_ANGLES = [0, np.pi/2, np.pi, np.pi*3/2]
theta_idx = np.random.randint(len(ROTATE_ANGLES))
theta = ROTATE_ANGLES[theta_idx]
if (theta is not None) and (theta != 0) and (split == 'train') and rot_aug:
rot_matrix = np.array([
[np.cos(theta), -np.sin(theta), 0],
[np.sin(theta), np.cos(theta), 0],
[0, 0, 1]
], dtype=np.float32)
else:
rot_matrix = None
return rot_matrix
def eval_ref_one_sample(pred_bbox, gt_bbox):
""" Evaluate one reference prediction
Args:
pred_bbox: 8 corners of prediction bounding box, (8, 3)
gt_bbox: 8 corners of ground truth bounding box, (8, 3)
Returns:
iou: intersection over union score
"""
iou = box3d_iou(pred_bbox, gt_bbox)
return iou
def get_box3d_min_max(corner):
''' Compute min and max coordinates for 3D bounding box
Note: only for axis-aligned bounding boxes
Input:
corners: numpy array (8,3), assume up direction is Z (batch of N samples)
Output:
box_min_max: an array for min and max coordinates of 3D bounding box IoU
'''
min_coord = corner.min(axis=0)
max_coord = corner.max(axis=0)
x_min, x_max = min_coord[0], max_coord[0]
y_min, y_max = min_coord[1], max_coord[1]
z_min, z_max = min_coord[2], max_coord[2]
return x_min, x_max, y_min, y_max, z_min, z_max
def box3d_iou(corners1, corners2):
''' Compute 3D bounding box IoU.
Input:
corners1: numpy array (8,3), assume up direction is Z
corners2: numpy array (8,3), assume up direction is Z
Output:
iou: 3D bounding box IoU
'''
x_min_1, x_max_1, y_min_1, y_max_1, z_min_1, z_max_1 = get_box3d_min_max(corners1)
x_min_2, x_max_2, y_min_2, y_max_2, z_min_2, z_max_2 = get_box3d_min_max(corners2)
xA = np.maximum(x_min_1, x_min_2)
yA = np.maximum(y_min_1, y_min_2)
zA = np.maximum(z_min_1, z_min_2)
xB = np.minimum(x_max_1, x_max_2)
yB = np.minimum(y_max_1, y_max_2)
zB = np.minimum(z_max_1, z_max_2)
inter_vol = np.maximum((xB - xA), 0) * np.maximum((yB - yA), 0) * np.maximum((zB - zA), 0)
box_vol_1 = (x_max_1 - x_min_1) * (y_max_1 - y_min_1) * (z_max_1 - z_min_1)
box_vol_2 = (x_max_2 - x_min_2) * (y_max_2 - y_min_2) * (z_max_2 - z_min_2)
iou = inter_vol / (box_vol_1 + box_vol_2 - inter_vol + 1e-8)
return iou
def transform_points(points, transform, translate=True, mode="numpy"):
""" Apply linear transform to a np array of points.
Args:
points (np array [..., 3]): Points to transform.
transform (np array [3, 4] or [4, 4]): Linear map.
translate (bool): If false, do not apply translation component of transform.
Returns:
transformed points (np array [..., 3])
"""
# Append ones or zeros to get homogenous coordinates
if translate:
if mode == "numpy":
constant_term = np.ones_like(points[..., :1])
else:
constant_term = torch.ones_like(points[..., :1])
else:
if mode == "numpy":
constant_term = np.zeros_like(points[..., :1])
else:
constant_term = torch.zeros_like(points[..., :1])
if mode == "numpy":
points = np.concatenate((points, constant_term), axis=-1)
points = np.einsum('nm,...m->...n', transform, points)
else:
points = torch.cat((points, constant_term), dim=-1)
points = torch.einsum('...nm,...m->...n', transform, points)
return points[..., :3]
def construct_bbox_corners(center, box_size):
sx, sy, sz = box_size
x_corners = [sx/2, sx/2, -sx/2, -sx/2, sx/2, sx/2, -sx/2, -sx/2]
y_corners = [sy/2, -sy/2, -sy/2, sy/2, sy/2, -sy/2, -sy/2, sy/2]
z_corners = [sz/2, sz/2, sz/2, sz/2, -sz/2, -sz/2, -sz/2, -sz/2]
corners_3d = np.vstack([x_corners, y_corners, z_corners])
corners_3d[0,:] = corners_3d[0,:] + center[0]
corners_3d[1,:] = corners_3d[1,:] + center[1]
corners_3d[2,:] = corners_3d[2,:] + center[2]
corners_3d = np.transpose(corners_3d)
return corners_3d
def is_explicitly_view_dependent(tokens):
"""
:return: a boolean mask
"""
target_words = {'front', 'behind', 'back', 'right', 'left', 'facing', 'leftmost', 'rightmost',
'looking', 'across'}
for token in tokens:
if token in target_words:
return True
return False
class ScanQAAnswer(object):
def __init__(self, answers=None, unk_token='<unk>', ignore_idx=-100):
if answers is None:
answers = []
self.unk_token = unk_token
self.ignore_idx = ignore_idx
self.vocab = {x: i for i, x in enumerate(answers)}
with open("answer_dict.txt", "w", encoding="utf-8") as f:
for ans, idx in self.vocab.items():
f.write(f"{idx}\t{ans}\n")
self.rev_vocab = dict((v, k) for k, v in self.vocab.items())
def itos(self, i):
if i == self.ignore_idx:
return self.unk_token
return self.rev_vocab[i]
def stoi(self, v):
if v not in self.vocab:
return self.ignore_idx
return self.vocab[v]
def __len__(self):
return len(self.vocab)
class Hypo3DAnswer(object):
def __init__(self, answers=None):
if answers is None:
answers = []
self.vocab = {x: i for i, x in enumerate(answers)}
self.rev_vocab = dict((v, k) for k, v in self.vocab.items())
def itos(self, i):
return self.rev_vocab[i]
def stoi(self, v):
return self.vocab[v]
def __len__(self):
return len(self.vocab)
class msnnAnswer(object):
def __init__(self, answers=None):
if answers is None:
answers = []
self.vocab = {x: i for i, x in enumerate(answers)}
self.rev_vocab = dict((v, k) for k, v in self.vocab.items())
def itos(self, i):
return self.rev_vocab[i]
def stoi(self, v):
return self.vocab[v]
def __len__(self):
return len(self.vocab)
class SQA3DAnswer(object):
def __init__(self, answers=None, unk_token='u'):
if answers is None:
answers = []
self.vocab = {x: i for i, x in enumerate(answers)}
self.rev_vocab = dict((v, k) for k, v in self.vocab.items())
self.unk_token = unk_token
self.ignore_idx = self.vocab['u']
def itos(self, i):
if i == self.ignore_idx:
return self.unk_token
return self.rev_vocab[i]
def stoi(self, v):
if v not in self.vocab:
return self.ignore_idx
return self.vocab[v]
def __len__(self):
return len(self.vocab)
class MSQAAnswer(object):
def __init__(self, answers=None, unk_token='u'):
if answers is None:
answers = []
self.vocab = {x: i for i, x in enumerate(answers)}
self.rev_vocab = dict((v, k) for k, v in self.vocab.items())
# self.unk_token = unk_token
# self.ignore_idx = self.vocab['u']
def itos(self, i):
# if i == self.ignore_idx:
# return self.unk_token
return self.rev_vocab[i].strip()
def stoi(self, v):
# if v not in self.vocab:
# return self.ignore_idx
return self.vocab[v.strip()]
def __len__(self):
return len(self.vocab)
def load_matrix_from_txt(path, shape=(4, 4)):
with open(path) as f:
txt = f.readlines()
txt = ''.join(txt).replace('\n', ' ')
matrix = [float(v) for v in txt.split()]
return np.array(matrix).reshape(shape)
def pad_tensors(tensors, lens=None, pad=0):
assert tensors.shape[0] <= lens
if tensors.shape[0] == lens:
return tensors
shape = list(tensors.shape)
shape[0] = lens - shape[0]
res = torch.ones(shape, dtype=tensors.dtype) * pad
res = torch.cat((tensors, res), dim=0)
return res
def get_sqa_question_type(question):
question = question.lstrip()
if question[:4].lower() == 'what':
return 0
elif question[:2].lower() == 'is':
return 1
elif question[:3].lower() == 'how':
return 2
elif question[:3].lower() == 'can':
return 3
elif question[:5].lower() == 'which':
return 4
else:
return 5 # others
def get_hypo_question_type(question):
question = question.lstrip()
if question[:4].lower() == 'what':
return 0
elif question[:2].lower() == 'is':
return 1
elif question[:3].lower() == 'how':
return 2
elif question[:3].lower() == 'can':
return 3
elif question[:5].lower() == 'which':
return 4
else:
return 5 # others
class Vocabulary(object):
def __init__(self, path=None):
self.vocab = {}
self.id_to_vocab = {}
self.id_to_bert = {}
if path is not None:
load_dict = torch.load(path)
self.vocab = load_dict['vocab']
self.id_to_vocab = load_dict['id_to_vocab']
self.id_to_bert = load_dict['id_to_bert']
def add_token(self, token, bert_id):
if token in self.vocab.keys():
return
id = len(self.vocab)
self.vocab[token] = id
self.id_to_vocab[id] = token
self.id_to_bert[id] = bert_id
def token_to_id(self, token):
return self.vocab[token]
def id_to_token(self, id):
return self.id_to_vocab[id]
def id_to_bert_id(self, id):
return self.id_to_bert[id]
def save_vocab(self, path):
save_dict = {'vocab': self.vocab, "id_to_vocab": self.id_to_vocab,
"id_to_bert": self.id_to_bert}
torch.save(save_dict, path)
def random_caption_word(tokens, tokens_mask, tokenizer, vocab, mask_ratio):
output_label = []
output_tokens = tokens.clone()
for i, token in enumerate(tokens): # 101 cls 102 sep use them as SOS and EOS token
if tokens_mask[i] == 0 or token == 101:
output_label.append(-1)
elif token == 102:
output_tokens[i] = tokenizer.mask_token_id
output_label.append(vocab.token_to_id('[EOS]'))
else:
prob = random.random()
# mask token with 15% probability
if prob < mask_ratio:
output_tokens[i] = tokenizer.mask_token_id
output_label.append(vocab.token_to_id(tokenizer.decode([tokens[i]])))
else:
# no masking token (will be ignored by loss function later)
output_label.append(-1)
output_label = torch.Tensor(output_label).long()
return output_tokens, output_label
def clean_answer(data):
data = data.lower()
data = re.sub('[ ]+$' ,'', data)
data = re.sub('^[ ]+' ,'', data)
data = re.sub(' {2,}', ' ', data)
data = re.sub('\.[ ]{2,}', '. ', data)
data = re.sub('[^a-zA-Z0-9,\'\s\-:]+', '', data)
data = re.sub('ç' ,'c', data)
data = re.sub('’' ,'\'', data)
data = re.sub(r'\bletf\b' ,'left', data)
data = re.sub(r'\blet\b' ,'left', data)
data = re.sub(r'\btehre\b' ,'there', data)
data = re.sub(r'\brigth\b' ,'right', data)
data = re.sub(r'\brght\b' ,'right', data)
data = re.sub(r'\bbehine\b', 'behind', data)
data = re.sub(r'\btv\b' ,'TV', data)
data = re.sub(r'\bchai\b' ,'chair', data)
data = re.sub(r'\bwasing\b' ,'washing', data)
data = re.sub(r'\bwaslked\b' ,'walked', data)
data = re.sub(r'\boclock\b' ,'o\'clock', data)
data = re.sub(r'\bo\'[ ]+clock\b' ,'o\'clock', data)
# digit to word, only for answer
data = re.sub(r'\b0\b', 'zero', data)
data = re.sub(r'\bnone\b', 'zero', data)
data = re.sub(r'\b1\b', 'one', data)
data = re.sub(r'\b2\b', 'two', data)
data = re.sub(r'\b3\b', 'three', data)
data = re.sub(r'\b4\b', 'four', data)
data = re.sub(r'\b5\b', 'five', data)
data = re.sub(r'\b6\b', 'six', data)
data = re.sub(r'\b7\b', 'seven', data)
data = re.sub(r'\b8\b', 'eight', data)
data = re.sub(r'\b9\b', 'nine', data)
data = re.sub(r'\b10\b', 'ten', data)
data = re.sub(r'\b11\b', 'eleven', data)
data = re.sub(r'\b12\b', 'twelve', data)
data = re.sub(r'\b13\b', 'thirteen', data)
data = re.sub(r'\b14\b', 'fourteen', data)
data = re.sub(r'\b15\b', 'fifteen', data)
data = re.sub(r'\b16\b', 'sixteen', data)
data = re.sub(r'\b17\b', 'seventeen', data)
data = re.sub(r'\b18\b', 'eighteen', data)
data = re.sub(r'\b19\b', 'nineteen', data)
data = re.sub(r'\b20\b', 'twenty', data)
data = re.sub(r'\b23\b', 'twenty-three', data)
# misc
# no1, mat2, etc
data = re.sub(r'\b([a-zA-Z]+)([0-9])\b' ,r'\g<1>', data)
data = re.sub(r'\ba\b ([a-zA-Z]+)' ,r'\g<1>', data)
data = re.sub(r'\ban\b ([a-zA-Z]+)' ,r'\g<1>', data)
data = re.sub(r'\bthe\b ([a-zA-Z]+)' ,r'\g<1>', data)
data = re.sub(r'\bbackwards\b', 'backward', data)
return data
if __name__ == "__main__":
path = "/home/baoxiong/Desktop/gpt_gen_language.json"
import json
with open(path, "r") as f:
data = json.load(f)
padded = per_scene_pad(data)
print(padded)