|
|
import json |
|
|
from glob import glob |
|
|
from omegaconf import OmegaConf |
|
|
from joblib import Parallel, delayed, parallel_backend |
|
|
|
|
|
import torch |
|
|
import numpy as np |
|
|
import trimesh |
|
|
import open3d as o3d |
|
|
from tqdm import tqdm |
|
|
|
|
|
from preprocess.build import ProcessorBase |
|
|
from preprocess.utils.label_convert import RSCAN_SCANNET as label_convert |
|
|
from preprocess.utils.align_utils import compute_box_3d, calc_align_matrix, rotate_z_axis_by_degrees |
|
|
from preprocess.utils.constant import * |
|
|
|
|
|
|
|
|
class RScanProcessor(ProcessorBase): |
|
|
def record_splits(self, scan_ids, ratio=0.8): |
|
|
split_dir = self.save_root / 'split' |
|
|
split_dir.mkdir(exist_ok=True) |
|
|
if (split_dir / 'train_split.txt').exists() and (split_dir / 'val_split.txt').exists(): |
|
|
return |
|
|
scan_len = len(scan_ids) |
|
|
split = { |
|
|
'train': [], |
|
|
'val': []} |
|
|
cur_split = 'train' |
|
|
for scan_id in tqdm(sorted(scan_ids)): |
|
|
split[cur_split].append(scan_id) |
|
|
if len(split['train']) > ratio*scan_len: |
|
|
cur_split = 'val' |
|
|
for _s, _c in split.items(): |
|
|
with open(split_dir / f'{_s}_split.txt', 'w', encoding='utf-8') as fp: |
|
|
fp.write('\n'.join(_c)) |
|
|
|
|
|
def read_all_scans(self): |
|
|
scan_paths = glob(str(self.data_root) + '/*') |
|
|
scan_ids = [path.split('/')[-1] for path in scan_paths] |
|
|
return scan_ids |
|
|
|
|
|
def process_point_cloud(self, scan_id, plydata, annotations): |
|
|
plylabel, segments, aggregation = annotations |
|
|
vertices = plydata.vertices |
|
|
vertex_colors = trimesh.visual.uv_to_color(plydata.visual.uv, plydata.visual.material.image) |
|
|
vertex_colors = vertex_colors[:, :3] / 255.0 |
|
|
|
|
|
none_list = list() |
|
|
seg_to_inst = {} |
|
|
inst_to_label = {} |
|
|
seg_indices = segments['segIndices'] |
|
|
seg_group = aggregation['segGroups'] |
|
|
bbox_list = [] |
|
|
for i, _ in enumerate(seg_group): |
|
|
if seg_group[i]['label'] not in label_convert: |
|
|
none_list.append(seg_group[i]['label']) |
|
|
continue |
|
|
inst_to_label[seg_group[i]['id']] = label_convert[seg_group[i]['label']] |
|
|
|
|
|
rotation = np.array(seg_group[i]["obb"]["normalizedAxes"]).reshape(3, 3) |
|
|
transform = np.array(seg_group[i]["obb"]["centroid"]).reshape(-1, 3) |
|
|
scale = np.array(seg_group[i]["obb"]["axesLengths"]).reshape(-1, 3) |
|
|
trns = np.eye(4) |
|
|
trns[0:3, 3] = transform |
|
|
trns[0:3, 0:3] = rotation.T |
|
|
box3d = compute_box_3d(scale.reshape(3).tolist(), transform, rotation) |
|
|
bbox_list.append(box3d) |
|
|
|
|
|
for j in seg_group[i]['segments']: |
|
|
seg_to_inst[j] = seg_group[i]['id'] |
|
|
assert seg_group[i]['id'] == seg_group[i]['objectId'] |
|
|
assert seg_group[i]['id'] > 0 |
|
|
|
|
|
query_points = vertices |
|
|
pcd = o3d.geometry.PointCloud() |
|
|
pcd.points = o3d.utility.Vector3dVector(np.array(plylabel.vertices, dtype=np.float64)) |
|
|
tree = o3d.geometry.KDTreeFlann(pcd) |
|
|
|
|
|
out_instance = [] |
|
|
|
|
|
for i, _ in enumerate(query_points): |
|
|
point = query_points[i] |
|
|
[k, idx, distance] = tree.search_radius_vector_3d(point,0.1) |
|
|
if k == 0: |
|
|
out_instance.append(-1) |
|
|
else: |
|
|
nn_idx = idx[0] |
|
|
if seg_indices[nn_idx] not in seg_to_inst.keys(): |
|
|
out_instance.append(-1) |
|
|
else: |
|
|
out_instance.append(seg_to_inst[seg_indices[nn_idx]]) |
|
|
|
|
|
|
|
|
align_angle = calc_align_matrix(bbox_list) |
|
|
vertices = rotate_z_axis_by_degrees(np.array(vertices), align_angle) |
|
|
|
|
|
if np.max(vertex_colors) <= 1: |
|
|
vertex_colors = vertex_colors * 255.0 |
|
|
|
|
|
center_points = np.mean(vertices, axis=0) |
|
|
center_points[2] = np.min(vertices[:, 2]) |
|
|
vertices= vertices - center_points |
|
|
vertex_instance = np.array(out_instance) |
|
|
|
|
|
assert vertex_colors.shape == vertices.shape |
|
|
assert vertex_colors.shape[0] == vertex_instance.shape[0] |
|
|
|
|
|
if self.check_key(self.output.pcd): |
|
|
torch.save(inst_to_label, self.inst2label_path / f"{scan_id}.pth") |
|
|
torch.save((vertices, vertex_colors, vertex_instance), self.pcd_path / f"{scan_id}.pth") |
|
|
np.save(self.pcd_path / f"{scan_id}_align_angle.npy", align_angle) |
|
|
|
|
|
def scene_proc(self, scan_id): |
|
|
data_root = self.data_root / scan_id |
|
|
plydata = trimesh.load(data_root / 'mesh.refined.v2.obj', process=False) |
|
|
if not (data_root / 'labels.instances.annotated.v2.ply').exists(): |
|
|
return |
|
|
plylabel = trimesh.load(data_root / 'labels.instances.annotated.v2.ply', process=False) |
|
|
with open((data_root / 'mesh.refined.0.010000.segs.v2.json'), "r", encoding='utf-8') as f: |
|
|
segments = json.load(f) |
|
|
with open((data_root / 'semseg.v2.json'), "r", encoding='utf-8') as f: |
|
|
aggregation = json.load(f) |
|
|
|
|
|
|
|
|
self.process_point_cloud(scan_id, plydata, (plylabel, segments, aggregation)) |
|
|
|
|
|
def process_scans(self): |
|
|
scan_ids = self.read_all_scans() |
|
|
self.log_starting_info(len(scan_ids)) |
|
|
|
|
|
if self.num_workers > 1: |
|
|
with parallel_backend('multiprocessing', n_jobs=self.num_workers): |
|
|
Parallel()(delayed(self.scene_proc)(scan_id) for scan_id in tqdm(scan_ids)) |
|
|
else: |
|
|
for scan_id in tqdm(scan_ids): |
|
|
self.scene_proc(scan_id) |
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
cfg = OmegaConf.create({ |
|
|
'data_root': '/path/to/3RScan', |
|
|
'save_root': '/output/path/to/3RScan', |
|
|
'num_workers': 1, |
|
|
'output': { |
|
|
'pcd': True, |
|
|
} |
|
|
}) |
|
|
processor = RScanProcessor(cfg) |
|
|
processor.process_scans() |
|
|
|