|
|
import argparse |
|
|
import random |
|
|
import json |
|
|
from pathlib import Path |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
import open3d as o3d |
|
|
|
|
|
|
|
|
def convert_pc_to_box(obj_pc): |
|
|
xmin = np.min(obj_pc[:,0]) |
|
|
ymin = np.min(obj_pc[:,1]) |
|
|
zmin = np.min(obj_pc[:,2]) |
|
|
xmax = np.max(obj_pc[:,0]) |
|
|
ymax = np.max(obj_pc[:,1]) |
|
|
zmax = np.max(obj_pc[:,2]) |
|
|
center = [(xmin+xmax)/2, (ymin+ymax)/2, (zmin+zmax)/2] |
|
|
box_size = [xmax-xmin, ymax-ymin, zmax-zmin] |
|
|
return center, box_size |
|
|
|
|
|
|
|
|
def load_scan(pcd_path, inst2label_path, scene_name): |
|
|
pcd_data = torch.load(pcd_path / f'{scene_name}.pth') |
|
|
inst_to_label = torch.load(inst2label_path / f"{scene_name}.pth") |
|
|
points, colors, instance_labels = pcd_data[0], pcd_data[1], pcd_data[-1] |
|
|
pcds = np.concatenate([points, colors], 1) |
|
|
return points, colors, pcds, instance_labels, inst_to_label |
|
|
|
|
|
|
|
|
def visualize_one_scene(obj_pcds, points, colors, caption): |
|
|
|
|
|
o3d_pcd = o3d.geometry.PointCloud() |
|
|
o3d_pcd.points = o3d.utility.Vector3dVector(points) |
|
|
o3d_pcd.colors = o3d.utility.Vector3dVector(colors / 255.0) |
|
|
|
|
|
for idx, (obj, obj_label) in enumerate(obj_pcds): |
|
|
if idx > 3: |
|
|
break |
|
|
gt_center, gt_size = convert_pc_to_box(obj) |
|
|
gt_o3d_box = o3d.geometry.OrientedBoundingBox(gt_center, np.eye(3,3), gt_size) |
|
|
gt_o3d_box.color = [0, 1, 0] |
|
|
mesh_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.6, origin=[-0, -0, -0]) |
|
|
o3d.visualization.draw_geometries([o3d_pcd, gt_o3d_box, mesh_frame], window_name=obj_label+'_'+caption) |
|
|
|
|
|
|
|
|
def visualize_data(save_root, scene_name, vis_obj=True): |
|
|
inst2label_path = save_root / 'instance_id_to_label' |
|
|
pcd_path = save_root / 'pcd_with_global_alignment' |
|
|
|
|
|
points, colors, pcds, instance_labels, inst_to_label = load_scan(pcd_path, inst2label_path, scene_name) |
|
|
|
|
|
if not vis_obj: |
|
|
o3d_pcd = o3d.geometry.PointCloud() |
|
|
mesh_frame = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.6, origin=[-0, -0, -0]) |
|
|
o3d_pcd.points = o3d.utility.Vector3dVector(points) |
|
|
o3d_pcd.colors = o3d.utility.Vector3dVector(colors / 255.0) |
|
|
o3d.visualization.draw_geometries([mesh_frame, o3d_pcd]) |
|
|
return |
|
|
|
|
|
obj_pcds = [] |
|
|
for i in inst_to_label.keys(): |
|
|
mask = instance_labels == i |
|
|
if np.sum(mask) == 0: |
|
|
continue |
|
|
obj_pcds.append((pcds[mask], inst_to_label[i])) |
|
|
|
|
|
visualize_one_scene(obj_pcds, points, colors, scene_name) |
|
|
|
|
|
def visualize_refer(save_root, anno_file): |
|
|
inst2label_path = save_root / 'instance_id_to_label' |
|
|
pcd_path = save_root / 'pcd_with_global_alignment' |
|
|
json_data = json.load(open(anno_file, 'r', encoding='utf8')) |
|
|
for item in json_data: |
|
|
scan_id = item['scan_id'] |
|
|
inst2label_path = save_root / 'instance_id_to_label' |
|
|
pcd_path = save_root / 'pcd_with_global_alignment' |
|
|
|
|
|
inst_to_label = torch.load(inst2label_path / f"{scan_id}.pth") |
|
|
pcd_data = torch.load(pcd_path / f'{scan_id}.pth') |
|
|
points, colors, instance_labels = pcd_data[0], pcd_data[1], pcd_data[-1] |
|
|
pcds = np.concatenate([points, colors], 1) |
|
|
|
|
|
target_id = int(item['target_id']) |
|
|
mask = instance_labels == target_id |
|
|
if np.sum(mask) == 0: |
|
|
continue |
|
|
|
|
|
obj_pcds = [(pcds[mask], inst_to_label[target_id])] |
|
|
visualize_one_scene(obj_pcds, points, colors, scan_id+'-'+item['utterance']) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument("-r", "--root", required=True, type=str, help="path of dataset dir") |
|
|
parser.add_argument("-d", "--dataset", type=str, |
|
|
help="available datasets in ['ARKitScenes', 'HM3D', 'MultiScan', 'ProcThor', \ |
|
|
'Structured3D', 'ScanNet', '3RScan']") |
|
|
parser.add_argument("--vis_refer", action="store_true", |
|
|
help="visualize reference data") |
|
|
parser.add_argument("-a", "--anno", type=str, default="ssg_ref_rel2_template.json", |
|
|
help="the annotation file for reference") |
|
|
args = parser.parse_args() |
|
|
dataset = args.dataset |
|
|
assert dataset in ['ARKitScenes', 'HM3D', 'MultiScan', 'ProcThor', 'Structured3D', 'ScanNet', '3RScan'] |
|
|
print(dataset) |
|
|
data_root = Path(args.root) / dataset |
|
|
if args.vis_refer: |
|
|
if dataset == 'ScanNet': |
|
|
anno_file = data_root / 'annotations/refer' / args.anno |
|
|
else: |
|
|
anno_file = data_root / 'annotations' / args.anno |
|
|
|
|
|
visualize_refer(data_root / 'scan_data', anno_file) |
|
|
else: |
|
|
all_scans = (data_root / 'scan_data' / 'pcd_with_global_alignment').glob('*.pth') |
|
|
scene_id = Path(random.choice(list(all_scans))).stem |
|
|
visualize_data(data_root / 'scan_data', scene_id) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|